1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
// Take a look at the license at the top of the repository in the LICENSE file.

use crate::{gobject_ffi, prelude::*, translate::*, InterfaceInfo, TypeInfo, TypeValueTable};

crate::wrapper! {
    /// An interface that handles the lifecycle of dynamically loaded types.
    ///
    /// The GObject type system supports dynamic loading of types.
    /// It goes as follows:
    ///
    /// 1. The type is initially introduced (usually upon loading the module
    ///  the first time, or by your main application that knows what modules
    ///  introduces what types), like this:
    ///  **⚠️ The following code is in c ⚠️**
    ///
    /// ```c
    ///    new_type_id = g_type_register_dynamic (parent_type_id,
    ///                                           "TypeName",
    ///                                           new_type_plugin,
    ///                                           type_flags);
    ///    ```
    ///  where `new_type_plugin` is an implementation of the
    ///  `GTypePlugin` interface.
    ///
    /// 2. The type's implementation is referenced, e.g. through
    ///  [func[`Object`][crate::Object].ref] or through [func[`Object`][crate::Object]]
    ///  (this is being called by [ctor[`Object`][crate::Object].new]) or through one of the above
    ///  done on a type derived from `new_type_id`.
    ///
    /// 3. This causes the type system to load the type's implementation by calling
    ///  [method[`Object`][crate::Object].use] and [method[`Object`][crate::Object].complete_type_info]
    ///  on `new_type_plugin`.
    ///
    /// 4. At some point the type's implementation isn't required anymore, e.g. after
    ///  [method[`Object`][crate::Object].unref] or [func[`Object`][crate::Object]]
    ///  (called when the reference count of an instance drops to zero).
    ///
    /// 5. This causes the type system to throw away the information retrieved
    ///  from [method[`Object`][crate::Object].complete_type_info] and then it calls
    ///  [method[`Object`][crate::Object].unuse] on `new_type_plugin`.
    ///
    /// 6. Things may repeat from the second step.
    ///
    /// So basically, you need to implement a `GTypePlugin` type that
    /// carries a use_count, once use_count goes from zero to one, you need
    /// to load the implementation to successfully handle the upcoming
    /// [method[`Object`][crate::Object].complete_type_info] call. Later, maybe after
    /// succeeding use/unuse calls, once use_count drops to zero, you can
    /// unload the implementation again. The type system makes sure to call
    /// [method[`Object`][crate::Object].use] and [method[`Object`][crate::Object].complete_type_info]
    /// again when the type is needed again.
    ///
    /// [class[`Object`][crate::Object]] is an implementation of `GTypePlugin` that
    /// already implements most of this except for the actual module loading and
    /// unloading. It even handles multiple registered types per module.
    ///
    /// # Implements
    ///
    /// [`TypePluginExt`][trait@crate::prelude::TypePluginExt]
    // rustdoc-stripper-ignore-next-stop
    /// An interface that handles the lifecycle of dynamically loaded types.
    ///
    /// The GObject type system supports dynamic loading of types.
    /// It goes as follows:
    ///
    /// 1. The type is initially introduced (usually upon loading the module
    ///  the first time, or by your main application that knows what modules
    ///  introduces what types), like this:
    ///  **⚠️ The following code is in c ⚠️**
    ///
    /// ```c
    ///    new_type_id = g_type_register_dynamic (parent_type_id,
    ///                                           "TypeName",
    ///                                           new_type_plugin,
    ///                                           type_flags);
    ///    ```
    ///  where `new_type_plugin` is an implementation of the
    ///  `GTypePlugin` interface.
    ///
    /// 2. The type's implementation is referenced, e.g. through
    ///  [func[`Object`][crate::Object].ref] or through [func[`Object`][crate::Object]]
    ///  (this is being called by [ctor[`Object`][crate::Object].new]) or through one of the above
    ///  done on a type derived from `new_type_id`.
    ///
    /// 3. This causes the type system to load the type's implementation by calling
    ///  [method[`Object`][crate::Object].use] and [method[`Object`][crate::Object].complete_type_info]
    ///  on `new_type_plugin`.
    ///
    /// 4. At some point the type's implementation isn't required anymore, e.g. after
    ///  [method[`Object`][crate::Object].unref] or [func[`Object`][crate::Object]]
    ///  (called when the reference count of an instance drops to zero).
    ///
    /// 5. This causes the type system to throw away the information retrieved
    ///  from [method[`Object`][crate::Object].complete_type_info] and then it calls
    ///  [method[`Object`][crate::Object].unuse] on `new_type_plugin`.
    ///
    /// 6. Things may repeat from the second step.
    ///
    /// So basically, you need to implement a `GTypePlugin` type that
    /// carries a use_count, once use_count goes from zero to one, you need
    /// to load the implementation to successfully handle the upcoming
    /// [method[`Object`][crate::Object].complete_type_info] call. Later, maybe after
    /// succeeding use/unuse calls, once use_count drops to zero, you can
    /// unload the implementation again. The type system makes sure to call
    /// [method[`Object`][crate::Object].use] and [method[`Object`][crate::Object].complete_type_info]
    /// again when the type is needed again.
    ///
    /// [class[`Object`][crate::Object]] is an implementation of `GTypePlugin` that
    /// already implements most of this except for the actual module loading and
    /// unloading. It even handles multiple registered types per module.
    ///
    /// # Implements
    ///
    /// [`TypePluginExt`][trait@crate::prelude::TypePluginExt]
    #[doc(alias = "GTypePlugin")]
    pub struct TypePlugin(Interface<gobject_ffi::GTypePlugin, gobject_ffi::GTypePluginClass>);

    match fn {
        type_ => || gobject_ffi::g_type_plugin_get_type(),
    }
}

impl TypePlugin {
    pub const NONE: Option<&'static TypePlugin> = None;
}

mod sealed {
    pub trait Sealed {}
    impl<T: super::IsA<super::TypePlugin>> Sealed for T {}
}

/// Trait containing all [`struct@TypePlugin`] methods.
///
/// # Implementors
///
/// [`TypeModule`][struct@crate::TypeModule], [`TypePlugin`][struct@crate::TypePlugin]
// rustdoc-stripper-ignore-next-stop
/// Trait containing all [`struct@TypePlugin`] methods.
///
/// # Implementors
///
/// [`TypeModule`][struct@crate::TypeModule], [`TypePlugin`][struct@crate::TypePlugin]
pub trait TypePluginExt: IsA<TypePlugin> + sealed::Sealed + 'static {
    /// Calls the `complete_interface_info` function from the
    /// `GTypePluginClass` of `self`. There should be no need to use this
    /// function outside of the GObject type system itself.
    /// ## `instance_type`
    /// the `GType` of an instantiatable type to which the interface
    ///  is added
    /// ## `interface_type`
    /// the `GType` of the interface whose info is completed
    /// ## `info`
    /// the [`InterfaceInfo`][crate::InterfaceInfo] to fill in
    // rustdoc-stripper-ignore-next-stop
    /// Calls the `complete_interface_info` function from the
    /// `GTypePluginClass` of `self`. There should be no need to use this
    /// function outside of the GObject type system itself.
    /// ## `instance_type`
    /// the `GType` of an instantiatable type to which the interface
    ///  is added
    /// ## `interface_type`
    /// the `GType` of the interface whose info is completed
    /// ## `info`
    /// the [`InterfaceInfo`][crate::InterfaceInfo] to fill in
    #[doc(alias = "g_type_plugin_complete_interface_info")]
    fn complete_interface_info(
        &self,
        instance_type: crate::types::Type,
        interface_type: crate::types::Type,
    ) -> InterfaceInfo {
        let info = InterfaceInfo::default();
        unsafe {
            gobject_ffi::g_type_plugin_complete_interface_info(
                self.as_ref().to_glib_none().0,
                instance_type.into_glib(),
                interface_type.into_glib(),
                info.as_ptr(),
            );
        }
        info
    }

    /// Calls the `complete_type_info` function from the `GTypePluginClass` of `self`.
    /// There should be no need to use this function outside of the GObject
    /// type system itself.
    /// ## `g_type`
    /// the `GType` whose info is completed
    /// ## `info`
    /// the [`TypeInfo`][crate::TypeInfo] struct to fill in
    /// ## `value_table`
    /// the [`TypeValueTable`][crate::TypeValueTable] to fill in
    // rustdoc-stripper-ignore-next-stop
    /// Calls the `complete_type_info` function from the `GTypePluginClass` of `self`.
    /// There should be no need to use this function outside of the GObject
    /// type system itself.
    /// ## `g_type`
    /// the `GType` whose info is completed
    /// ## `info`
    /// the [`TypeInfo`][crate::TypeInfo] struct to fill in
    /// ## `value_table`
    /// the [`TypeValueTable`][crate::TypeValueTable] to fill in
    #[doc(alias = "g_type_plugin_complete_type_info")]
    fn complete_type_info(&self, g_type: crate::types::Type) -> (TypeInfo, TypeValueTable) {
        let info = TypeInfo::default();
        let value_table = TypeValueTable::default();
        unsafe {
            gobject_ffi::g_type_plugin_complete_type_info(
                self.as_ref().to_glib_none().0,
                g_type.into_glib(),
                info.as_ptr(),
                value_table.as_ptr(),
            );
        }
        (info, value_table)
    }

    /// Calls the `unuse_plugin` function from the `GTypePluginClass` of
    /// `self`. There should be no need to use this function outside of
    /// the GObject type system itself.
    // rustdoc-stripper-ignore-next-stop
    /// Calls the `unuse_plugin` function from the `GTypePluginClass` of
    /// `self`. There should be no need to use this function outside of
    /// the GObject type system itself.
    #[doc(alias = "g_type_plugin_unuse")]
    fn unuse(&self) {
        unsafe {
            gobject_ffi::g_type_plugin_unuse(self.as_ref().to_glib_none().0);
        }
    }

    /// Calls the `use_plugin` function from the `GTypePluginClass` of
    /// `self`. There should be no need to use this function outside of
    /// the GObject type system itself.
    // rustdoc-stripper-ignore-next-stop
    /// Calls the `use_plugin` function from the `GTypePluginClass` of
    /// `self`. There should be no need to use this function outside of
    /// the GObject type system itself.
    #[doc(alias = "g_type_plugin_use")]
    #[doc(alias = "use")]
    fn use_(&self) {
        unsafe {
            gobject_ffi::g_type_plugin_use(self.as_ref().to_glib_none().0);
        }
    }
}

impl<O: IsA<TypePlugin>> TypePluginExt for O {}