1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
// This file was generated by gir (https://github.com/gtk-rs/gir)
// from gir-files (https://github.com/gtk-rs/gir-files)
// DO NOT EDIT
use crate::{Rect, Vec3};
use glib::translate::*;
glib::wrapper! {
/// A point with three components: X, Y, and Z.
pub struct Point3D(BoxedInline<ffi::graphene_point3d_t>);
match fn {
copy => |ptr| glib::gobject_ffi::g_boxed_copy(ffi::graphene_point3d_get_type(), ptr as *mut _) as *mut ffi::graphene_point3d_t,
free => |ptr| glib::gobject_ffi::g_boxed_free(ffi::graphene_point3d_get_type(), ptr as *mut _),
type_ => || ffi::graphene_point3d_get_type(),
}
}
impl Point3D {
/// Computes the cross product of the two given [`Point3D`][crate::Point3D].
/// ## `b`
/// a [`Point3D`][crate::Point3D]
///
/// # Returns
///
///
/// ## `res`
/// return location for the cross
/// product
#[doc(alias = "graphene_point3d_cross")]
#[must_use]
pub fn cross(&self, b: &Point3D) -> Point3D {
unsafe {
let mut res = Point3D::uninitialized();
ffi::graphene_point3d_cross(
self.to_glib_none().0,
b.to_glib_none().0,
res.to_glib_none_mut().0,
);
res
}
}
/// Computes the distance between the two given [`Point3D`][crate::Point3D].
/// ## `b`
/// a [`Point3D`][crate::Point3D]
///
/// # Returns
///
/// the distance between two points
///
/// ## `delta`
/// return location for the distance
/// components on the X, Y, and Z axis
#[doc(alias = "graphene_point3d_distance")]
pub fn distance(&self, b: &Point3D) -> (f32, Vec3) {
unsafe {
let mut delta = Vec3::uninitialized();
let ret = ffi::graphene_point3d_distance(
self.to_glib_none().0,
b.to_glib_none().0,
delta.to_glib_none_mut().0,
);
(ret, delta)
}
}
/// Computes the dot product of the two given [`Point3D`][crate::Point3D].
/// ## `b`
/// a [`Point3D`][crate::Point3D]
///
/// # Returns
///
/// the value of the dot product
#[doc(alias = "graphene_point3d_dot")]
pub fn dot(&self, b: &Point3D) -> f32 {
unsafe { ffi::graphene_point3d_dot(self.to_glib_none().0, b.to_glib_none().0) }
}
#[doc(alias = "graphene_point3d_equal")]
fn equal(&self, b: &Point3D) -> bool {
unsafe { ffi::graphene_point3d_equal(self.to_glib_none().0, b.to_glib_none().0) }
}
/// Linearly interpolates each component of `self` and `b` using the
/// provided `factor`, and places the result in `res`.
/// ## `b`
/// a [`Point3D`][crate::Point3D]
/// ## `factor`
/// the interpolation factor
///
/// # Returns
///
///
/// ## `res`
/// the return location for the
/// interpolated [`Point3D`][crate::Point3D]
#[doc(alias = "graphene_point3d_interpolate")]
#[must_use]
pub fn interpolate(&self, b: &Point3D, factor: f64) -> Point3D {
unsafe {
let mut res = Point3D::uninitialized();
ffi::graphene_point3d_interpolate(
self.to_glib_none().0,
b.to_glib_none().0,
factor,
res.to_glib_none_mut().0,
);
res
}
}
/// Computes the length of the vector represented by the
/// coordinates of the given [`Point3D`][crate::Point3D].
///
/// # Returns
///
/// the length of the vector represented by the point
#[doc(alias = "graphene_point3d_length")]
pub fn length(&self) -> f32 {
unsafe { ffi::graphene_point3d_length(self.to_glib_none().0) }
}
/// Checks whether the two points are near each other, within
/// an `epsilon` factor.
/// ## `b`
/// a [`Point3D`][crate::Point3D]
/// ## `epsilon`
/// fuzzyness factor
///
/// # Returns
///
/// `true` if the points are near each other
#[doc(alias = "graphene_point3d_near")]
pub fn near(&self, b: &Point3D, epsilon: f32) -> bool {
unsafe { ffi::graphene_point3d_near(self.to_glib_none().0, b.to_glib_none().0, epsilon) }
}
/// Computes the normalization of the vector represented by the
/// coordinates of the given [`Point3D`][crate::Point3D].
///
/// # Returns
///
///
/// ## `res`
/// return location for the normalized
/// [`Point3D`][crate::Point3D]
#[doc(alias = "graphene_point3d_normalize")]
#[must_use]
pub fn normalize(&self) -> Point3D {
unsafe {
let mut res = Point3D::uninitialized();
ffi::graphene_point3d_normalize(self.to_glib_none().0, res.to_glib_none_mut().0);
res
}
}
/// Normalizes the coordinates of a [`Point3D`][crate::Point3D] using the
/// given viewport and clipping planes.
///
/// The coordinates of the resulting [`Point3D`][crate::Point3D] will be
/// in the [ -1, 1 ] range.
/// ## `viewport`
/// a [`Rect`][crate::Rect] representing a viewport
/// ## `z_near`
/// the coordinate of the near clipping plane, or 0 for
/// the default near clipping plane
/// ## `z_far`
/// the coordinate of the far clipping plane, or 1 for the
/// default far clipping plane
///
/// # Returns
///
///
/// ## `res`
/// the return location for the
/// normalized [`Point3D`][crate::Point3D]
#[doc(alias = "graphene_point3d_normalize_viewport")]
#[must_use]
pub fn normalize_viewport(&self, viewport: &Rect, z_near: f32, z_far: f32) -> Point3D {
unsafe {
let mut res = Point3D::uninitialized();
ffi::graphene_point3d_normalize_viewport(
self.to_glib_none().0,
viewport.to_glib_none().0,
z_near,
z_far,
res.to_glib_none_mut().0,
);
res
}
}
/// Scales the coordinates of the given [`Point3D`][crate::Point3D] by
/// the given `factor`.
/// ## `factor`
/// the scaling factor
///
/// # Returns
///
///
/// ## `res`
/// return location for the scaled point
#[doc(alias = "graphene_point3d_scale")]
#[must_use]
pub fn scale(&self, factor: f32) -> Point3D {
unsafe {
let mut res = Point3D::uninitialized();
ffi::graphene_point3d_scale(self.to_glib_none().0, factor, res.to_glib_none_mut().0);
res
}
}
/// Stores the coordinates of a [`Point3D`][crate::Point3D] into a
/// [`Vec3`][crate::Vec3].
///
/// # Returns
///
///
/// ## `v`
/// return location for a [`Vec3`][crate::Vec3]
#[doc(alias = "graphene_point3d_to_vec3")]
pub fn to_vec3(&self) -> Vec3 {
unsafe {
let mut v = Vec3::uninitialized();
ffi::graphene_point3d_to_vec3(self.to_glib_none().0, v.to_glib_none_mut().0);
v
}
}
/// Retrieves a constant point with all three coordinates set to 0.
///
/// # Returns
///
/// a zero point
#[doc(alias = "graphene_point3d_zero")]
pub fn zero() -> Point3D {
assert_initialized_main_thread!();
unsafe { from_glib_none(ffi::graphene_point3d_zero()) }
}
}
impl PartialEq for Point3D {
#[inline]
fn eq(&self, other: &Self) -> bool {
self.equal(other)
}
}
impl Eq for Point3D {}