1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
// This file was generated by gir (https://github.com/gtk-rs/gir)
// from gir-files (https://github.com/gtk-rs/gir-files)
// DO NOT EDIT
use glib::translate::*;
glib::wrapper! {
/// A structure capable of holding a vector with two dimensions, x and y.
///
/// The contents of the [`Vec2`][crate::Vec2] structure are private and should
/// never be accessed directly.
pub struct Vec2(BoxedInline<ffi::graphene_vec2_t>);
match fn {
copy => |ptr| glib::gobject_ffi::g_boxed_copy(ffi::graphene_vec2_get_type(), ptr as *mut _) as *mut ffi::graphene_vec2_t,
free => |ptr| glib::gobject_ffi::g_boxed_free(ffi::graphene_vec2_get_type(), ptr as *mut _),
type_ => || ffi::graphene_vec2_get_type(),
}
}
impl Vec2 {
/// Adds each component of the two passed vectors and places
/// each result into the components of `res`.
/// ## `b`
/// a [`Vec2`][crate::Vec2]
///
/// # Returns
///
///
/// ## `res`
/// return location for the result
#[doc(alias = "graphene_vec2_add")]
#[must_use]
pub fn add(&self, b: &Vec2) -> Vec2 {
unsafe {
let mut res = Vec2::uninitialized();
ffi::graphene_vec2_add(
self.to_glib_none().0,
b.to_glib_none().0,
res.to_glib_none_mut().0,
);
res
}
}
/// Divides each component of the first operand `self` by the corresponding
/// component of the second operand `b`, and places the results into the
/// vector `res`.
/// ## `b`
/// a [`Vec2`][crate::Vec2]
///
/// # Returns
///
///
/// ## `res`
/// return location for the result
#[doc(alias = "graphene_vec2_divide")]
#[must_use]
pub fn divide(&self, b: &Vec2) -> Vec2 {
unsafe {
let mut res = Vec2::uninitialized();
ffi::graphene_vec2_divide(
self.to_glib_none().0,
b.to_glib_none().0,
res.to_glib_none_mut().0,
);
res
}
}
/// Computes the dot product of the two given vectors.
/// ## `b`
/// a [`Vec2`][crate::Vec2]
///
/// # Returns
///
/// the dot product of the vectors
#[doc(alias = "graphene_vec2_dot")]
pub fn dot(&self, b: &Vec2) -> f32 {
unsafe { ffi::graphene_vec2_dot(self.to_glib_none().0, b.to_glib_none().0) }
}
#[doc(alias = "graphene_vec2_equal")]
fn equal(&self, v2: &Vec2) -> bool {
unsafe { ffi::graphene_vec2_equal(self.to_glib_none().0, v2.to_glib_none().0) }
}
/// Retrieves the X component of the [`Vec2`][crate::Vec2].
///
/// # Returns
///
/// the value of the X component
#[doc(alias = "graphene_vec2_get_x")]
#[doc(alias = "get_x")]
pub fn x(&self) -> f32 {
unsafe { ffi::graphene_vec2_get_x(self.to_glib_none().0) }
}
/// Retrieves the Y component of the [`Vec2`][crate::Vec2].
///
/// # Returns
///
/// the value of the Y component
#[doc(alias = "graphene_vec2_get_y")]
#[doc(alias = "get_y")]
pub fn y(&self) -> f32 {
unsafe { ffi::graphene_vec2_get_y(self.to_glib_none().0) }
}
/// Linearly interpolates `self` and `v2` using the given `factor`.
/// ## `v2`
/// a [`Vec2`][crate::Vec2]
/// ## `factor`
/// the interpolation factor
///
/// # Returns
///
///
/// ## `res`
/// the interpolated vector
#[doc(alias = "graphene_vec2_interpolate")]
#[must_use]
pub fn interpolate(&self, v2: &Vec2, factor: f64) -> Vec2 {
unsafe {
let mut res = Vec2::uninitialized();
ffi::graphene_vec2_interpolate(
self.to_glib_none().0,
v2.to_glib_none().0,
factor,
res.to_glib_none_mut().0,
);
res
}
}
/// Computes the length of the given vector.
///
/// # Returns
///
/// the length of the vector
#[doc(alias = "graphene_vec2_length")]
pub fn length(&self) -> f32 {
unsafe { ffi::graphene_vec2_length(self.to_glib_none().0) }
}
/// Compares the two given vectors and places the maximum
/// values of each component into `res`.
/// ## `b`
/// a [`Vec2`][crate::Vec2]
///
/// # Returns
///
///
/// ## `res`
/// the resulting vector
#[doc(alias = "graphene_vec2_max")]
#[must_use]
pub fn max(&self, b: &Vec2) -> Vec2 {
unsafe {
let mut res = Vec2::uninitialized();
ffi::graphene_vec2_max(
self.to_glib_none().0,
b.to_glib_none().0,
res.to_glib_none_mut().0,
);
res
}
}
/// Compares the two given vectors and places the minimum
/// values of each component into `res`.
/// ## `b`
/// a [`Vec2`][crate::Vec2]
///
/// # Returns
///
///
/// ## `res`
/// the resulting vector
#[doc(alias = "graphene_vec2_min")]
#[must_use]
pub fn min(&self, b: &Vec2) -> Vec2 {
unsafe {
let mut res = Vec2::uninitialized();
ffi::graphene_vec2_min(
self.to_glib_none().0,
b.to_glib_none().0,
res.to_glib_none_mut().0,
);
res
}
}
/// Multiplies each component of the two passed vectors and places
/// each result into the components of `res`.
/// ## `b`
/// a [`Vec2`][crate::Vec2]
///
/// # Returns
///
///
/// ## `res`
/// return location for the result
#[doc(alias = "graphene_vec2_multiply")]
#[must_use]
pub fn multiply(&self, b: &Vec2) -> Vec2 {
unsafe {
let mut res = Vec2::uninitialized();
ffi::graphene_vec2_multiply(
self.to_glib_none().0,
b.to_glib_none().0,
res.to_glib_none_mut().0,
);
res
}
}
/// Compares the two given [`Vec2`][crate::Vec2] vectors and checks
/// whether their values are within the given `epsilon`.
/// ## `v2`
/// a [`Vec2`][crate::Vec2]
/// ## `epsilon`
/// the threshold between the two vectors
///
/// # Returns
///
/// `true` if the two vectors are near each other
#[doc(alias = "graphene_vec2_near")]
pub fn near(&self, v2: &Vec2, epsilon: f32) -> bool {
unsafe { ffi::graphene_vec2_near(self.to_glib_none().0, v2.to_glib_none().0, epsilon) }
}
/// Negates the given [`Vec2`][crate::Vec2].
///
/// # Returns
///
///
/// ## `res`
/// return location for the result vector
#[doc(alias = "graphene_vec2_negate")]
#[must_use]
pub fn negate(&self) -> Vec2 {
unsafe {
let mut res = Vec2::uninitialized();
ffi::graphene_vec2_negate(self.to_glib_none().0, res.to_glib_none_mut().0);
res
}
}
/// Computes the normalized vector for the given vector `self`.
///
/// # Returns
///
///
/// ## `res`
/// return location for the
/// normalized vector
#[doc(alias = "graphene_vec2_normalize")]
#[must_use]
pub fn normalize(&self) -> Vec2 {
unsafe {
let mut res = Vec2::uninitialized();
ffi::graphene_vec2_normalize(self.to_glib_none().0, res.to_glib_none_mut().0);
res
}
}
/// Multiplies all components of the given vector with the given scalar `factor`.
/// ## `factor`
/// the scalar factor
///
/// # Returns
///
///
/// ## `res`
/// return location for the result vector
#[doc(alias = "graphene_vec2_scale")]
#[must_use]
pub fn scale(&self, factor: f32) -> Vec2 {
unsafe {
let mut res = Vec2::uninitialized();
ffi::graphene_vec2_scale(self.to_glib_none().0, factor, res.to_glib_none_mut().0);
res
}
}
/// Subtracts from each component of the first operand `self` the
/// corresponding component of the second operand `b` and places
/// each result into the components of `res`.
/// ## `b`
/// a [`Vec2`][crate::Vec2]
///
/// # Returns
///
///
/// ## `res`
/// return location for the result
#[doc(alias = "graphene_vec2_subtract")]
#[must_use]
pub fn subtract(&self, b: &Vec2) -> Vec2 {
unsafe {
let mut res = Vec2::uninitialized();
ffi::graphene_vec2_subtract(
self.to_glib_none().0,
b.to_glib_none().0,
res.to_glib_none_mut().0,
);
res
}
}
/// Retrieves a constant vector with (1, 1) components.
///
/// # Returns
///
/// the one vector
#[doc(alias = "graphene_vec2_one")]
pub fn one() -> Vec2 {
assert_initialized_main_thread!();
unsafe { from_glib_none(ffi::graphene_vec2_one()) }
}
/// Retrieves a constant vector with (1, 0) components.
///
/// # Returns
///
/// the X axis vector
#[doc(alias = "graphene_vec2_x_axis")]
pub fn x_axis() -> Vec2 {
assert_initialized_main_thread!();
unsafe { from_glib_none(ffi::graphene_vec2_x_axis()) }
}
/// Retrieves a constant vector with (0, 1) components.
///
/// # Returns
///
/// the Y axis vector
#[doc(alias = "graphene_vec2_y_axis")]
pub fn y_axis() -> Vec2 {
assert_initialized_main_thread!();
unsafe { from_glib_none(ffi::graphene_vec2_y_axis()) }
}
/// Retrieves a constant vector with (0, 0) components.
///
/// # Returns
///
/// the zero vector
#[doc(alias = "graphene_vec2_zero")]
pub fn zero() -> Vec2 {
assert_initialized_main_thread!();
unsafe { from_glib_none(ffi::graphene_vec2_zero()) }
}
}
impl PartialEq for Vec2 {
#[inline]
fn eq(&self, other: &Self) -> bool {
self.equal(other)
}
}
impl Eq for Vec2 {}