1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
// This file was generated by gir (https://github.com/gtk-rs/gir)
// from gir-files (https://github.com/gtk-rs/gir-files)
// DO NOT EDIT
use crate::{Box, Plane, Point3D, RayIntersectionKind, Sphere, Triangle, Vec3};
use glib::translate::*;
glib::wrapper! {
/// A ray emitted from an origin in a given direction.
///
/// The contents of the [`Ray`][crate::Ray] structure are private, and should not
/// be modified directly.
pub struct Ray(BoxedInline<ffi::graphene_ray_t>);
match fn {
copy => |ptr| glib::gobject_ffi::g_boxed_copy(ffi::graphene_ray_get_type(), ptr as *mut _) as *mut ffi::graphene_ray_t,
free => |ptr| glib::gobject_ffi::g_boxed_free(ffi::graphene_ray_get_type(), ptr as *mut _),
type_ => || ffi::graphene_ray_get_type(),
}
}
impl Ray {
#[doc(alias = "graphene_ray_equal")]
fn equal(&self, b: &Ray) -> bool {
unsafe { ffi::graphene_ray_equal(self.to_glib_none().0, b.to_glib_none().0) }
}
/// Computes the point on the given [`Ray`][crate::Ray] that is closest to the
/// given point `p`.
/// ## `p`
/// a [`Point3D`][crate::Point3D]
///
/// # Returns
///
///
/// ## `res`
/// return location for the closest point3d
#[doc(alias = "graphene_ray_get_closest_point_to_point")]
#[doc(alias = "get_closest_point_to_point")]
pub fn closest_point_to_point(&self, p: &Point3D) -> Point3D {
unsafe {
let mut res = Point3D::uninitialized();
ffi::graphene_ray_get_closest_point_to_point(
self.to_glib_none().0,
p.to_glib_none().0,
res.to_glib_none_mut().0,
);
res
}
}
/// Retrieves the direction of the given [`Ray`][crate::Ray].
///
/// # Returns
///
///
/// ## `direction`
/// return location for the direction
#[doc(alias = "graphene_ray_get_direction")]
#[doc(alias = "get_direction")]
pub fn direction(&self) -> Vec3 {
unsafe {
let mut direction = Vec3::uninitialized();
ffi::graphene_ray_get_direction(self.to_glib_none().0, direction.to_glib_none_mut().0);
direction
}
}
/// Computes the distance of the origin of the given [`Ray`][crate::Ray] from the
/// given plane.
///
/// If the ray does not intersect the plane, this function returns `INFINITY`.
/// ## `p`
/// a [`Plane`][crate::Plane]
///
/// # Returns
///
/// the distance of the origin of the ray from the plane
#[doc(alias = "graphene_ray_get_distance_to_plane")]
#[doc(alias = "get_distance_to_plane")]
pub fn distance_to_plane(&self, p: &Plane) -> f32 {
unsafe {
ffi::graphene_ray_get_distance_to_plane(self.to_glib_none().0, p.to_glib_none().0)
}
}
/// Computes the distance of the closest approach between the
/// given [`Ray`][crate::Ray] `self` and the point `p`.
///
/// The closest approach to a ray from a point is the distance
/// between the point and the projection of the point on the
/// ray itself.
/// ## `p`
/// a [`Point3D`][crate::Point3D]
///
/// # Returns
///
/// the distance of the point
#[doc(alias = "graphene_ray_get_distance_to_point")]
#[doc(alias = "get_distance_to_point")]
pub fn distance_to_point(&self, p: &Point3D) -> f32 {
unsafe {
ffi::graphene_ray_get_distance_to_point(self.to_glib_none().0, p.to_glib_none().0)
}
}
/// Retrieves the origin of the given [`Ray`][crate::Ray].
///
/// # Returns
///
///
/// ## `origin`
/// return location for the origin
#[doc(alias = "graphene_ray_get_origin")]
#[doc(alias = "get_origin")]
pub fn origin(&self) -> Point3D {
unsafe {
let mut origin = Point3D::uninitialized();
ffi::graphene_ray_get_origin(self.to_glib_none().0, origin.to_glib_none_mut().0);
origin
}
}
/// Retrieves the coordinates of a point at the distance `t` along the
/// given [`Ray`][crate::Ray].
/// ## `t`
/// the distance along the ray
///
/// # Returns
///
///
/// ## `position`
/// return location for the position
#[doc(alias = "graphene_ray_get_position_at")]
#[doc(alias = "get_position_at")]
pub fn position_at(&self, t: f32) -> Point3D {
unsafe {
let mut position = Point3D::uninitialized();
ffi::graphene_ray_get_position_at(
self.to_glib_none().0,
t,
position.to_glib_none_mut().0,
);
position
}
}
/// Intersects the given [`Ray`][crate::Ray] `self` with the given
/// [`Box`][crate::Box] `b`.
/// ## `b`
/// a [`Box`][crate::Box]
///
/// # Returns
///
/// the type of intersection
///
/// ## `t_out`
/// the distance of the point on the ray that intersects the box
#[doc(alias = "graphene_ray_intersect_box")]
pub fn intersect_box(&self, b: &Box) -> (RayIntersectionKind, f32) {
unsafe {
let mut t_out = std::mem::MaybeUninit::uninit();
let ret = from_glib(ffi::graphene_ray_intersect_box(
self.to_glib_none().0,
b.to_glib_none().0,
t_out.as_mut_ptr(),
));
(ret, t_out.assume_init())
}
}
/// Intersects the given [`Ray`][crate::Ray] `self` with the given
/// [`Sphere`][crate::Sphere] `s`.
/// ## `s`
/// a [`Sphere`][crate::Sphere]
///
/// # Returns
///
/// the type of intersection
///
/// ## `t_out`
/// the distance of the point on the ray that intersects the sphere
#[doc(alias = "graphene_ray_intersect_sphere")]
pub fn intersect_sphere(&self, s: &Sphere) -> (RayIntersectionKind, f32) {
unsafe {
let mut t_out = std::mem::MaybeUninit::uninit();
let ret = from_glib(ffi::graphene_ray_intersect_sphere(
self.to_glib_none().0,
s.to_glib_none().0,
t_out.as_mut_ptr(),
));
(ret, t_out.assume_init())
}
}
/// Intersects the given [`Ray`][crate::Ray] `self` with the given
/// [`Triangle`][crate::Triangle] `t`.
/// ## `t`
/// a [`Triangle`][crate::Triangle]
///
/// # Returns
///
/// the type of intersection
///
/// ## `t_out`
/// the distance of the point on the ray that intersects the triangle
#[doc(alias = "graphene_ray_intersect_triangle")]
pub fn intersect_triangle(&self, t: &Triangle) -> (RayIntersectionKind, f32) {
unsafe {
let mut t_out = std::mem::MaybeUninit::uninit();
let ret = from_glib(ffi::graphene_ray_intersect_triangle(
self.to_glib_none().0,
t.to_glib_none().0,
t_out.as_mut_ptr(),
));
(ret, t_out.assume_init())
}
}
/// Checks whether the given [`Ray`][crate::Ray] `self` intersects the
/// given [`Box`][crate::Box] `b`.
///
/// See also: [`intersect_box()`][Self::intersect_box()]
/// ## `b`
/// a [`Box`][crate::Box]
///
/// # Returns
///
/// `true` if the ray intersects the box
#[doc(alias = "graphene_ray_intersects_box")]
pub fn intersects_box(&self, b: &Box) -> bool {
unsafe { ffi::graphene_ray_intersects_box(self.to_glib_none().0, b.to_glib_none().0) }
}
/// Checks if the given [`Ray`][crate::Ray] `self` intersects the
/// given [`Sphere`][crate::Sphere] `s`.
///
/// See also: [`intersect_sphere()`][Self::intersect_sphere()]
/// ## `s`
/// a [`Sphere`][crate::Sphere]
///
/// # Returns
///
/// `true` if the ray intersects the sphere
#[doc(alias = "graphene_ray_intersects_sphere")]
pub fn intersects_sphere(&self, s: &Sphere) -> bool {
unsafe { ffi::graphene_ray_intersects_sphere(self.to_glib_none().0, s.to_glib_none().0) }
}
/// Checks whether the given [`Ray`][crate::Ray] `self` intersects the
/// given [`Triangle`][crate::Triangle] `b`.
///
/// See also: [`intersect_triangle()`][Self::intersect_triangle()]
/// ## `t`
/// a [`Triangle`][crate::Triangle]
///
/// # Returns
///
/// `true` if the ray intersects the triangle
#[doc(alias = "graphene_ray_intersects_triangle")]
pub fn intersects_triangle(&self, t: &Triangle) -> bool {
unsafe { ffi::graphene_ray_intersects_triangle(self.to_glib_none().0, t.to_glib_none().0) }
}
}
impl PartialEq for Ray {
#[inline]
fn eq(&self, other: &Self) -> bool {
self.equal(other)
}
}
impl Eq for Ray {}