1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
// Take a look at the license at the top of the repository in the LICENSE file.

use crate::DropTarget;
use glib::signal::connect_raw;
use glib::Type;
use glib::{translate::*, ObjectType, SignalHandlerId};
use std::boxed::Box as Box_;
use std::mem::transmute;

impl DropTarget {
    /// Sets the supported `GTypes` for this drop target.
    /// ## `types`
    /// all supported `GType`s
    ///  that can be dropped on the target
    #[doc(alias = "gtk_drop_target_set_gtypes")]
    pub fn set_types(&self, types: &[Type]) {
        let types: Vec<glib::ffi::GType> = types.iter().map(|t| t.into_glib()).collect();
        unsafe {
            ffi::gtk_drop_target_set_gtypes(
                self.to_glib_none().0,
                mut_override(types.as_ptr()),
                types.len(),
            )
        }
    }

    /// Gets the list of supported `GType`s that can be dropped on the target.
    ///
    /// If no types have been set, `NULL` will be returned.
    ///
    /// # Returns
    ///
    ///
    ///  the `G_TYPE_INVALID`-terminated array of types included in
    ///  formats
    #[doc(alias = "gtk_drop_target_get_gtypes")]
    #[doc(alias = "get_gtypes")]
    pub fn types(&self) -> Vec<Type> {
        unsafe {
            let mut n_types = std::mem::MaybeUninit::uninit();
            let types =
                ffi::gtk_drop_target_get_gtypes(self.to_glib_none().0, n_types.as_mut_ptr());

            FromGlibContainer::from_glib_none_num(types, n_types.assume_init() as usize)
        }
    }

    /// Emitted on the drop site when the user drops the data onto the widget.
    ///
    /// The signal handler must determine whether the pointer position is in
    /// a drop zone or not. If it is not in a drop zone, it returns [`false`]
    /// and no further processing is necessary.
    ///
    /// Otherwise, the handler returns [`true`]. In this case, this handler will
    /// accept the drop. The handler is responsible for using the given `value`
    /// and performing the drop operation.
    /// ## `value`
    /// the `GValue` being dropped
    /// ## `x`
    /// the x coordinate of the current pointer position
    /// ## `y`
    /// the y coordinate of the current pointer position
    ///
    /// # Returns
    ///
    /// whether the drop was accepted at the given pointer position
    pub fn connect_drop<F: Fn(&DropTarget, &glib::Value, f64, f64) -> bool + 'static>(
        &self,
        f: F,
    ) -> SignalHandlerId {
        unsafe extern "C" fn drop_trampoline<
            F: Fn(&DropTarget, &glib::Value, f64, f64) -> bool + 'static,
        >(
            this: *mut ffi::GtkDropTarget,
            value: *mut glib::gobject_ffi::GValue,
            x: libc::c_double,
            y: libc::c_double,
            f: glib::ffi::gpointer,
        ) -> glib::ffi::gboolean {
            let f: &F = &*(f as *const F);
            f(
                &from_glib_borrow(this),
                &*(value as *const glib::Value),
                x,
                y,
            )
            .into_glib()
        }
        unsafe {
            let f: Box_<F> = Box_::new(f);
            connect_raw(
                self.as_ptr() as *mut _,
                b"drop\0".as_ptr() as *const _,
                Some(transmute::<_, unsafe extern "C" fn()>(
                    drop_trampoline::<F> as *const (),
                )),
                Box_::into_raw(f),
            )
        }
    }
}