1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
// This file was generated by gir (https://github.com/gtk-rs/gir)
// from gir-files (https://github.com/gtk-rs/gir-files)
// DO NOT EDIT
use crate::{FillRule, PathPoint, Stroke};
use glib::translate::*;
use std::{fmt, mem};
glib::wrapper! {
/// A [`Path`][crate::Path] describes lines and curves that are more complex
/// than simple rectangles.
///
/// Paths can used for rendering (filling or stroking) and for animations
/// (e.g. as trajectories).
///
/// [`Path`][crate::Path] is an immutable, opaque, reference-counted struct.
/// After creation, you cannot change the types it represents. Instead,
/// new [`Path`][crate::Path] objects have to be created. The [`PathBuilder`][crate::PathBuilder]
/// structure is meant to help in this endeavor.
///
/// Conceptually, a path consists of zero or more contours (continous, connected
/// curves), each of which may or may not be closed. Contours are typically
/// constructed from Bézier segments.
///
/// <picture>
/// <source srcset="path-dark.png" media="(prefers-color-scheme: dark)">
/// <img alt="A Path" src="path-light.png">
/// </picture>
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Path(Shared<ffi::GskPath>);
match fn {
ref => |ptr| ffi::gsk_path_ref(ptr),
unref => |ptr| ffi::gsk_path_unref(ptr),
type_ => || ffi::gsk_path_get_type(),
}
}
impl Path {
/// Computes the bounds of the given path.
///
/// The returned bounds may be larger than necessary, because this
/// function aims to be fast, not accurate. The bounds are guaranteed
/// to contain the path.
///
/// It is possible that the returned rectangle has 0 width and/or height.
/// This can happen when the path only describes a point or an
/// axis-aligned line.
///
/// If the path is empty, `FALSE` is returned and @bounds are set to
/// graphene_rect_zero(). This is different from the case where the path
/// is a single point at the origin, where the @bounds will also be set to
/// the zero rectangle but `TRUE` will be returned.
///
/// # Returns
///
/// `TRUE` if the path has bounds, `FALSE` if the path is known
/// to be empty and have no bounds.
///
/// ## `bounds`
/// the bounds of the given path
#[doc(alias = "gsk_path_get_bounds")]
#[doc(alias = "get_bounds")]
pub fn bounds(&self) -> Option<graphene::Rect> {
unsafe {
let mut bounds = graphene::Rect::uninitialized();
let ret = from_glib(ffi::gsk_path_get_bounds(
self.to_glib_none().0,
bounds.to_glib_none_mut().0,
));
if ret {
Some(bounds)
} else {
None
}
}
}
/// Computes the closest point on the path to the given point
/// and sets the @result to it.
///
/// If there is no point closer than the given threshold,
/// `FALSE` is returned.
/// ## `point`
/// the point
/// ## `threshold`
/// maximum allowed distance
///
/// # Returns
///
/// `TRUE` if @point was set to the closest point
/// on @self, `FALSE` if no point is closer than @threshold
///
/// ## `result`
/// return location for the closest point
///
/// ## `distance`
/// return location for the distance
#[doc(alias = "gsk_path_get_closest_point")]
#[doc(alias = "get_closest_point")]
pub fn closest_point(
&self,
point: &graphene::Point,
threshold: f32,
) -> Option<(PathPoint, f32)> {
unsafe {
let mut result = PathPoint::uninitialized();
let mut distance = mem::MaybeUninit::uninit();
let ret = from_glib(ffi::gsk_path_get_closest_point(
self.to_glib_none().0,
point.to_glib_none().0,
threshold,
result.to_glib_none_mut().0,
distance.as_mut_ptr(),
));
if ret {
Some((result, distance.assume_init()))
} else {
None
}
}
}
/// Gets the end point of the path.
///
/// An empty path has no points, so `FALSE`
/// is returned in this case.
///
/// # Returns
///
/// `TRUE` if @result was filled
///
/// ## `result`
/// return location for point
#[doc(alias = "gsk_path_get_end_point")]
#[doc(alias = "get_end_point")]
pub fn end_point(&self) -> Option<PathPoint> {
unsafe {
let mut result = PathPoint::uninitialized();
let ret = from_glib(ffi::gsk_path_get_end_point(
self.to_glib_none().0,
result.to_glib_none_mut().0,
));
if ret {
Some(result)
} else {
None
}
}
}
/// Gets the start point of the path.
///
/// An empty path has no points, so `FALSE`
/// is returned in this case.
///
/// # Returns
///
/// `TRUE` if @result was filled
///
/// ## `result`
/// return location for point
#[doc(alias = "gsk_path_get_start_point")]
#[doc(alias = "get_start_point")]
pub fn start_point(&self) -> Option<PathPoint> {
unsafe {
let mut result = PathPoint::uninitialized();
let ret = from_glib(ffi::gsk_path_get_start_point(
self.to_glib_none().0,
result.to_glib_none_mut().0,
));
if ret {
Some(result)
} else {
None
}
}
}
/// Computes the bounds for stroking the given path with the
/// parameters in @stroke.
///
/// The returned bounds may be larger than necessary, because this
/// function aims to be fast, not accurate. The bounds are guaranteed
/// to contain the area affected by the stroke, including protrusions
/// like miters.
/// ## `stroke`
/// stroke parameters
///
/// # Returns
///
/// `TRUE` if the path has bounds, `FALSE` if the path is known
/// to be empty and have no bounds.
///
/// ## `bounds`
/// the bounds to fill in
#[doc(alias = "gsk_path_get_stroke_bounds")]
#[doc(alias = "get_stroke_bounds")]
pub fn stroke_bounds(&self, stroke: &Stroke) -> Option<graphene::Rect> {
unsafe {
let mut bounds = graphene::Rect::uninitialized();
let ret = from_glib(ffi::gsk_path_get_stroke_bounds(
self.to_glib_none().0,
stroke.to_glib_none().0,
bounds.to_glib_none_mut().0,
));
if ret {
Some(bounds)
} else {
None
}
}
}
/// Returns whether the given point is inside the area
/// that would be affected if the path was filled according
/// to @fill_rule.
///
/// Note that this function assumes that filling a contour
/// implicitly closes it.
/// ## `point`
/// the point to test
/// ## `fill_rule`
/// the fill rule to follow
///
/// # Returns
///
/// `TRUE` if @point is inside
#[doc(alias = "gsk_path_in_fill")]
pub fn in_fill(&self, point: &graphene::Point, fill_rule: FillRule) -> bool {
unsafe {
from_glib(ffi::gsk_path_in_fill(
self.to_glib_none().0,
point.to_glib_none().0,
fill_rule.into_glib(),
))
}
}
/// Returns if the path represents a single closed
/// contour.
///
/// # Returns
///
/// `TRUE` if the path is closed
#[doc(alias = "gsk_path_is_closed")]
pub fn is_closed(&self) -> bool {
unsafe { from_glib(ffi::gsk_path_is_closed(self.to_glib_none().0)) }
}
/// Checks if the path is empty, i.e. contains no lines or curves.
///
/// # Returns
///
/// `TRUE` if the path is empty
#[doc(alias = "gsk_path_is_empty")]
pub fn is_empty(&self) -> bool {
unsafe { from_glib(ffi::gsk_path_is_empty(self.to_glib_none().0)) }
}
/// Appends the given @path to the given cairo context for drawing
/// with Cairo.
///
/// This may cause some suboptimal conversions to be performed as
/// Cairo does not support all features of [`Path`][crate::Path].
///
/// This function does not clear the existing Cairo path. Call
/// cairo_new_path() if you want this.
/// ## `cr`
/// a cairo context
#[doc(alias = "gsk_path_to_cairo")]
pub fn to_cairo(&self, cr: &cairo::Context) {
unsafe {
ffi::gsk_path_to_cairo(self.to_glib_none().0, mut_override(cr.to_glib_none().0));
}
}
/// Converts the path into a string that is suitable for printing.
///
/// You can use this function in a debugger to get a quick overview
/// of the path.
///
/// This is a wrapper around `Gsk::Path::print()`, see that function
/// for details.
///
/// # Returns
///
/// A new string for @self
#[doc(alias = "gsk_path_to_string")]
#[doc(alias = "to_string")]
pub fn to_str(&self) -> glib::GString {
unsafe { from_glib_full(ffi::gsk_path_to_string(self.to_glib_none().0)) }
}
/// This is a convenience function that constructs a [`Path`][crate::Path]
/// from a serialized form.
///
/// The string is expected to be in (a superset of)
/// [SVG path syntax](https://www.w3.org/TR/SVG11/paths.html#PathData),
/// as e.g. produced by [`to_str()`][Self::to_str()].
///
/// A high-level summary of the syntax:
///
/// - `M x y` Move to `(x, y)`
/// - `L x y` Add a line from the current point to `(x, y)`
/// - `Q x1 y1 x2 y2` Add a quadratic Bézier from the current point to `(x2, y2)`, with control point `(x1, y1)`
/// - `C x1 y1 x2 y2 x3 y3` Add a cubic Bézier from the current point to `(x3, y3)`, with control points `(x1, y1)` and `(x2, y2)`
/// - `Z` Close the contour by drawing a line back to the start point
/// - `H x` Add a horizontal line from the current point to the given x value
/// - `V y` Add a vertical line from the current point to the given y value
/// - `T x2 y2` Add a quadratic Bézier, using the reflection of the previous segments' control point as control point
/// - `S x2 y2 x3 y3` Add a cubic Bézier, using the reflection of the previous segments' second control point as first control point
/// - `A rx ry r l s x y` Add an elliptical arc from the current point to `(x, y)` with radii rx and ry. See the SVG documentation for how the other parameters influence the arc.
/// - `O x1 y1 x2 y2 w` Add a rational quadratic Bézier from the current point to `(x2, y2)` with control point `(x1, y1)` and weight `w`.
///
/// All the commands have lowercase variants that interpret coordinates
/// relative to the current point.
///
/// The `O` command is an extension that is not supported in SVG.
/// ## `string`
/// a string
///
/// # Returns
///
/// a new [`Path`][crate::Path], or `NULL` if @string could not be parsed
#[doc(alias = "gsk_path_parse")]
pub fn parse(string: &str) -> Result<Path, glib::BoolError> {
assert_initialized_main_thread!();
unsafe {
Option::<_>::from_glib_full(ffi::gsk_path_parse(string.to_glib_none().0))
.ok_or_else(|| glib::bool_error!("Can't parse Path"))
}
}
}
impl fmt::Display for Path {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str(&self.to_str())
}
}