1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
// This file was generated by gir (https://github.com/gtk-rs/gir)
// from gir-files (https://github.com/gtk-rs/gir-files)
// DO NOT EDIT
use glib::translate::*;
glib::wrapper! {
/// A [`Rectangle`][crate::Rectangle] data type for representing rectangles.
///
/// [`Rectangle`][crate::Rectangle] is identical to `cairo_rectangle_t`. Together with Cairo’s
/// [`cairo::Region`][crate::cairo::Region] data type, these are the central types for representing
/// sets of pixels.
///
/// The intersection of two rectangles can be computed with
/// [`intersect()`][Self::intersect()]; to find the union of two rectangles use
/// [`union()`][Self::union()].
///
/// The [`cairo::Region`][crate::cairo::Region] type provided by Cairo is usually used for managing
/// non-rectangular clipping of graphical operations.
///
/// The Graphene library has a number of other data types for regions and
/// volumes in 2D and 3D.
pub struct Rectangle(BoxedInline<ffi::GdkRectangle>);
match fn {
copy => |ptr| glib::gobject_ffi::g_boxed_copy(ffi::gdk_rectangle_get_type(), ptr as *mut _) as *mut ffi::GdkRectangle,
free => |ptr| glib::gobject_ffi::g_boxed_free(ffi::gdk_rectangle_get_type(), ptr as *mut _),
type_ => || ffi::gdk_rectangle_get_type(),
}
}
impl Rectangle {
/// Returns [`true`] if @self contains the point described by @x and @y.
/// ## `x`
/// X coordinate
/// ## `y`
/// Y coordinate
///
/// # Returns
///
/// [`true`] if @self contains the point
#[doc(alias = "gdk_rectangle_contains_point")]
pub fn contains_point(&self, x: i32, y: i32) -> bool {
unsafe {
from_glib(ffi::gdk_rectangle_contains_point(
self.to_glib_none().0,
x,
y,
))
}
}
#[doc(alias = "gdk_rectangle_equal")]
fn equal(&self, rect2: &Rectangle) -> bool {
unsafe {
from_glib(ffi::gdk_rectangle_equal(
self.to_glib_none().0,
rect2.to_glib_none().0,
))
}
}
/// Calculates the intersection of two rectangles.
///
/// It is allowed for @dest to be the same as either @self or @src2.
/// If the rectangles do not intersect, @dest’s width and height is set
/// to 0 and its x and y values are undefined. If you are only interested
/// in whether the rectangles intersect, but not in the intersecting area
/// itself, pass [`None`] for @dest.
/// ## `src2`
/// a [`Rectangle`][crate::Rectangle]
///
/// # Returns
///
/// [`true`] if the rectangles intersect.
///
/// ## `dest`
/// return location for the
/// intersection of @self and @src2
#[doc(alias = "gdk_rectangle_intersect")]
pub fn intersect(&self, src2: &Rectangle) -> Option<Rectangle> {
unsafe {
let mut dest = Rectangle::uninitialized();
let ret = from_glib(ffi::gdk_rectangle_intersect(
self.to_glib_none().0,
src2.to_glib_none().0,
dest.to_glib_none_mut().0,
));
if ret {
Some(dest)
} else {
None
}
}
}
/// Calculates the union of two rectangles.
///
/// The union of rectangles @self and @src2 is the smallest rectangle which
/// includes both @self and @src2 within it. It is allowed for @dest to be
/// the same as either @self or @src2.
///
/// Note that this function does not ignore 'empty' rectangles (ie. with
/// zero width or height).
/// ## `src2`
/// a [`Rectangle`][crate::Rectangle]
///
/// # Returns
///
///
/// ## `dest`
/// return location for the union of @self and @src2
#[doc(alias = "gdk_rectangle_union")]
#[must_use]
pub fn union(&self, src2: &Rectangle) -> Rectangle {
unsafe {
let mut dest = Rectangle::uninitialized();
ffi::gdk_rectangle_union(
self.to_glib_none().0,
src2.to_glib_none().0,
dest.to_glib_none_mut().0,
);
dest
}
}
}
impl PartialEq for Rectangle {
#[inline]
fn eq(&self, other: &Self) -> bool {
self.equal(other)
}
}
impl Eq for Rectangle {}