1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
// This file was generated by gir (https://github.com/gtk-rs/gir)
// from gir-files (https://github.com/gtk-rs/gir-files)
// DO NOT EDIT
use crate::{Buildable, Constraint, ConstraintGuide, LayoutManager};
use glib::{prelude::*, translate::*};
glib::wrapper! {
/// A layout manager using constraints to describe relations between widgets.
///
/// [`ConstraintLayout`][crate::ConstraintLayout] is a layout manager that uses relations between
/// widget attributes, expressed via [`Constraint`][crate::Constraint] instances, to
/// measure and allocate widgets.
///
/// ### How do constraints work
///
/// Constraints are objects defining the relationship between attributes
/// of a widget; you can read the description of the [`Constraint`][crate::Constraint]
/// class to have a more in depth definition.
///
/// By taking multiple constraints and applying them to the children of
/// a widget using [`ConstraintLayout`][crate::ConstraintLayout], it's possible to describe
/// complex layout policies; each constraint applied to a child or to the parent
/// widgets contributes to the full description of the layout, in terms of
/// parameters for resolving the value of each attribute.
///
/// It is important to note that a layout is defined by the totality of
/// constraints; removing a child, or a constraint, from an existing layout
/// without changing the remaining constraints may result in an unstable
/// or unsolvable layout.
///
/// Constraints have an implicit "reading order"; you should start describing
/// each edge of each child, as well as their relationship with the parent
/// container, from the top left (or top right, in RTL languages), horizontally
/// first, and then vertically.
///
/// A constraint-based layout with too few constraints can become "unstable",
/// that is: have more than one solution. The behavior of an unstable layout
/// is undefined.
///
/// A constraint-based layout with conflicting constraints may be unsolvable,
/// and lead to an unstable layout. You can use the [`strength`][struct@crate::Constraint#strength]
/// property of [`Constraint`][crate::Constraint] to "nudge" the layout towards a solution.
///
/// ### GtkConstraintLayout as GtkBuildable
///
/// [`ConstraintLayout`][crate::ConstraintLayout] implements the [`Buildable`][crate::Buildable] interface and
/// has a custom "constraints" element which allows describing constraints in
/// a [`Builder`][crate::Builder] UI file.
///
/// An example of a UI definition fragment specifying a constraint:
///
/// ```xml
/// <object class="GtkConstraintLayout">
/// <constraints>
/// <constraint target="button" target-attribute="start"
/// relation="eq"
/// source="super" source-attribute="start"
/// constant="12"
/// strength="required" />
/// <constraint target="button" target-attribute="width"
/// relation="ge"
/// constant="250"
/// strength="strong" />
/// </constraints>
/// </object>
/// ```
///
/// The definition above will add two constraints to the GtkConstraintLayout:
///
/// - a required constraint between the leading edge of "button" and
/// the leading edge of the widget using the constraint layout, plus
/// 12 pixels
/// - a strong, constant constraint making the width of "button" greater
/// than, or equal to 250 pixels
///
/// The "target" and "target-attribute" attributes are required.
///
/// The "source" and "source-attribute" attributes of the "constraint"
/// element are optional; if they are not specified, the constraint is
/// assumed to be a constant.
///
/// The "relation" attribute is optional; if not specified, the constraint
/// is assumed to be an equality.
///
/// The "strength" attribute is optional; if not specified, the constraint
/// is assumed to be required.
///
/// The "source" and "target" attributes can be set to "super" to indicate
/// that the constraint target is the widget using the GtkConstraintLayout.
///
/// There can be "constant" and "multiplier" attributes.
///
/// Additionally, the "constraints" element can also contain a description
/// of the `GtkConstraintGuides` used by the layout:
///
/// ```xml
/// <constraints>
/// <guide min-width="100" max-width="500" name="hspace"/>
/// <guide min-height="64" nat-height="128" name="vspace" strength="strong"/>
/// </constraints>
/// ```
///
/// The "guide" element has the following optional attributes:
///
/// - "min-width", "nat-width", and "max-width", describe the minimum,
/// natural, and maximum width of the guide, respectively
/// - "min-height", "nat-height", and "max-height", describe the minimum,
/// natural, and maximum height of the guide, respectively
/// - "strength" describes the strength of the constraint on the natural
/// size of the guide; if not specified, the constraint is assumed to
/// have a medium strength
/// - "name" describes a name for the guide, useful when debugging
///
/// ### Using the Visual Format Language
///
/// Complex constraints can be described using a compact syntax called VFL,
/// or *Visual Format Language*.
///
/// The Visual Format Language describes all the constraints on a row or
/// column, typically starting from the leading edge towards the trailing
/// one. Each element of the layout is composed by "views", which identify
/// a [`ConstraintTarget`][crate::ConstraintTarget].
///
/// For instance:
///
/// ```text
/// [button]-[textField]
/// ```
///
/// Describes a constraint that binds the trailing edge of "button" to the
/// leading edge of "textField", leaving a default space between the two.
///
/// Using VFL is also possible to specify predicates that describe constraints
/// on attributes like width and height:
///
/// ```text
/// // Width must be greater than, or equal to 50
/// [button(>=50)]
///
/// // Width of button1 must be equal to width of button2
/// [button1(==button2)]
/// ```
///
/// The default orientation for a VFL description is horizontal, unless
/// otherwise specified:
///
/// ```text
/// // horizontal orientation, default attribute: width
/// H:[button(>=150)]
///
/// // vertical orientation, default attribute: height
/// V:[button1(==button2)]
/// ```
///
/// It's also possible to specify multiple predicates, as well as their
/// strength:
///
/// ```text
/// // minimum width of button must be 150
/// // natural width of button can be 250
/// [button(>=150@required, ==250@medium)]
/// ```
///
/// Finally, it's also possible to use simple arithmetic operators:
///
/// ```text
/// // width of button1 must be equal to width of button2
/// // divided by 2 plus 12
/// [button1(button2 / 2 + 12)]
/// ```
///
/// # Implements
///
/// [`LayoutManagerExt`][trait@crate::prelude::LayoutManagerExt], [`trait@glib::ObjectExt`], [`BuildableExt`][trait@crate::prelude::BuildableExt]
#[doc(alias = "GtkConstraintLayout")]
pub struct ConstraintLayout(Object<ffi::GtkConstraintLayout, ffi::GtkConstraintLayoutClass>) @extends LayoutManager, @implements Buildable;
match fn {
type_ => || ffi::gtk_constraint_layout_get_type(),
}
}
impl ConstraintLayout {
/// Creates a new [`ConstraintLayout`][crate::ConstraintLayout] layout manager.
///
/// # Returns
///
/// the newly created [`ConstraintLayout`][crate::ConstraintLayout]
#[doc(alias = "gtk_constraint_layout_new")]
pub fn new() -> ConstraintLayout {
assert_initialized_main_thread!();
unsafe { LayoutManager::from_glib_full(ffi::gtk_constraint_layout_new()).unsafe_cast() }
}
/// Adds a constraint to the layout manager.
///
/// The [`source`][struct@crate::Constraint#source] and [`target`][struct@crate::Constraint#target]
/// properties of `constraint` can be:
///
/// - set to `NULL` to indicate that the constraint refers to the
/// widget using `layout`
/// - set to the [`Widget`][crate::Widget] using `layout`
/// - set to a child of the [`Widget`][crate::Widget] using `layout`
/// - set to a [`ConstraintGuide`][crate::ConstraintGuide] that is part of `layout`
///
/// The @self acquires the ownership of @constraint after calling
/// this function.
/// ## `constraint`
/// a [`Constraint`][crate::Constraint]
#[doc(alias = "gtk_constraint_layout_add_constraint")]
pub fn add_constraint(&self, constraint: Constraint) {
unsafe {
ffi::gtk_constraint_layout_add_constraint(
self.to_glib_none().0,
constraint.into_glib_ptr(),
);
}
}
/// Adds a guide to `layout`.
///
/// A guide can be used as the source or target of constraints,
/// like a widget, but it is not visible.
///
/// The `layout` acquires the ownership of `guide` after calling
/// this function.
/// ## `guide`
/// a [`ConstraintGuide`][crate::ConstraintGuide] object
#[doc(alias = "gtk_constraint_layout_add_guide")]
pub fn add_guide(&self, guide: ConstraintGuide) {
unsafe {
ffi::gtk_constraint_layout_add_guide(self.to_glib_none().0, guide.into_glib_ptr());
}
}
/// Returns a `GListModel` to track the constraints that are
/// part of the layout.
///
/// Calling this function will enable extra internal bookkeeping
/// to track constraints and emit signals on the returned listmodel.
/// It may slow down operations a lot.
///
/// Applications should try hard to avoid calling this function
/// because of the slowdowns.
///
/// # Returns
///
/// a
/// `GListModel` tracking the layout's constraints
#[doc(alias = "gtk_constraint_layout_observe_constraints")]
pub fn observe_constraints(&self) -> gio::ListModel {
unsafe {
from_glib_full(ffi::gtk_constraint_layout_observe_constraints(
self.to_glib_none().0,
))
}
}
/// Returns a `GListModel` to track the guides that are
/// part of the layout.
///
/// Calling this function will enable extra internal bookkeeping
/// to track guides and emit signals on the returned listmodel.
/// It may slow down operations a lot.
///
/// Applications should try hard to avoid calling this function
/// because of the slowdowns.
///
/// # Returns
///
/// a
/// `GListModel` tracking the layout's guides
#[doc(alias = "gtk_constraint_layout_observe_guides")]
pub fn observe_guides(&self) -> gio::ListModel {
unsafe {
from_glib_full(ffi::gtk_constraint_layout_observe_guides(
self.to_glib_none().0,
))
}
}
/// Removes all constraints from the layout manager.
#[doc(alias = "gtk_constraint_layout_remove_all_constraints")]
pub fn remove_all_constraints(&self) {
unsafe {
ffi::gtk_constraint_layout_remove_all_constraints(self.to_glib_none().0);
}
}
/// Removes `constraint` from the layout manager,
/// so that it no longer influences the layout.
/// ## `constraint`
/// a [`Constraint`][crate::Constraint]
#[doc(alias = "gtk_constraint_layout_remove_constraint")]
pub fn remove_constraint(&self, constraint: &Constraint) {
unsafe {
ffi::gtk_constraint_layout_remove_constraint(
self.to_glib_none().0,
constraint.to_glib_none().0,
);
}
}
/// Removes `guide` from the layout manager,
/// so that it no longer influences the layout.
/// ## `guide`
/// a [`ConstraintGuide`][crate::ConstraintGuide] object
#[doc(alias = "gtk_constraint_layout_remove_guide")]
pub fn remove_guide(&self, guide: &ConstraintGuide) {
unsafe {
ffi::gtk_constraint_layout_remove_guide(self.to_glib_none().0, guide.to_glib_none().0);
}
}
}
impl Default for ConstraintLayout {
fn default() -> Self {
Self::new()
}
}