1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
// This file was generated by gir (https://github.com/gtk-rs/gir)
// from gir-files (https://github.com/gtk-rs/gir-files)
// DO NOT EDIT
use crate::ExpressionWatch;
use glib::{prelude::*, translate::*};
use std::boxed::Box as Box_;
glib::wrapper! {
/// [`Expression`][crate::Expression] provides a way to describe references to values.
///
/// An important aspect of expressions is that the value can be obtained
/// from a source that is several steps away. For example, an expression
/// may describe ‘the value of property A of `object1`, which is itself the
/// value of a property of `object2`’. And `object1` may not even exist yet
/// at the time that the expression is created. This is contrast to `GObject`
/// property bindings, which can only create direct connections between
/// the properties of two objects that must both exist for the duration
/// of the binding.
///
/// An expression needs to be "evaluated" to obtain the value that it currently
/// refers to. An evaluation always happens in the context of a current object
/// called `this` (it mirrors the behavior of object-oriented languages),
/// which may or may not influence the result of the evaluation. Use
/// [`evaluate()`][Self::evaluate()] for evaluating an expression.
///
/// Various methods for defining expressions exist, from simple constants via
/// [`ConstantExpression::new()`][crate::ConstantExpression::new()] to looking up properties in a `GObject`
/// (even recursively) via [`PropertyExpression::new()`][crate::PropertyExpression::new()] or providing
/// custom functions to transform and combine expressions via
/// [`ClosureExpression::new()`][crate::ClosureExpression::new()].
///
/// Here is an example of a complex expression:
///
/// **⚠️ The following code is in c ⚠️**
///
/// ```c
/// color_expr = gtk_property_expression_new (GTK_TYPE_LIST_ITEM,
/// NULL, "item");
/// expression = gtk_property_expression_new (GTK_TYPE_COLOR,
/// color_expr, "name");
/// ```
///
/// when evaluated with `this` being a [`ListItem`][crate::ListItem], it will obtain the
/// "item" property from the [`ListItem`][crate::ListItem], and then obtain the "name" property
/// from the resulting object (which is assumed to be of type `GTK_TYPE_COLOR`).
///
/// A more concise way to describe this would be
///
/// ```text
/// this->item->name
/// ```
///
/// The most likely place where you will encounter expressions is in the context
/// of list models and list widgets using them. For example, [`DropDown`][crate::DropDown] is
/// evaluating a [`Expression`][crate::Expression] to obtain strings from the items in its model
/// that it can then use to match against the contents of its search entry.
/// [`StringFilter`][crate::StringFilter] is using a [`Expression`][crate::Expression] for similar reasons.
///
/// By default, expressions are not paying attention to changes and evaluation is
/// just a snapshot of the current state at a given time. To get informed about
/// changes, an expression needs to be "watched" via a [`ExpressionWatch`][crate::ExpressionWatch],
/// which will cause a callback to be called whenever the value of the expression may
/// have changed; [`watch()`][Self::watch()] starts watching an expression, and
/// [`ExpressionWatch::unwatch()`][crate::ExpressionWatch::unwatch()] stops.
///
/// Watches can be created for automatically updating the property of an object,
/// similar to GObject's `GBinding` mechanism, by using [`bind()`][Self::bind()].
///
/// ## GtkExpression in GObject properties
///
/// In order to use a [`Expression`][crate::Expression] as a `GObject` property, you must use the
/// `param_spec_expression()` when creating a `GParamSpec` to install in the
/// `GObject` class being defined; for instance:
///
/// **⚠️ The following code is in c ⚠️**
///
/// ```c
/// obj_props[PROP_EXPRESSION] =
/// gtk_param_spec_expression ("expression",
/// "Expression",
/// "The expression used by the widget",
/// G_PARAM_READWRITE |
/// G_PARAM_STATIC_STRINGS |
/// G_PARAM_EXPLICIT_NOTIFY);
/// ```
///
/// When implementing the `GObjectClass.set_property` and `GObjectClass.get_property`
/// virtual functions, you must use `value_get_expression()`, to retrieve the
/// stored [`Expression`][crate::Expression] from the `GValue` container, and `value_set_expression()`,
/// to store the [`Expression`][crate::Expression] into the `GValue`; for instance:
///
/// **⚠️ The following code is in c ⚠️**
///
/// ```c
/// // in set_property()...
/// case PROP_EXPRESSION:
/// foo_widget_set_expression (foo, gtk_value_get_expression (value));
/// break;
///
/// // in get_property()...
/// case PROP_EXPRESSION:
/// gtk_value_set_expression (value, foo->expression);
/// break;
/// ```
///
/// ## GtkExpression in .ui files
///
/// [`Builder`][crate::Builder] has support for creating expressions. The syntax here can be used where
/// a [`Expression`][crate::Expression] object is needed like in a `<property>` tag for an expression
/// property, or in a `<binding name="property">` tag to bind a property to an expression.
///
/// To create a property expression, use the `<lookup>` element. It can have a `type`
/// attribute to specify the object type, and a `name` attribute to specify the property
/// to look up. The content of `<lookup>` can either be an element specifying the expression
/// to use the object, or a string that specifies the name of the object to use.
///
/// Example:
///
/// ```xml
/// <lookup name='search'>string_filter</lookup>
/// ```
///
/// Since the `<lookup>` element creates an expression and its element content can
/// itself be an expression, this means that `<lookup>` tags can also be nested.
/// This is a common idiom when dealing with [`ListItem`][crate::ListItem]s. See
/// [`BuilderListItemFactory`][crate::BuilderListItemFactory] for an example of this technique.
///
/// To create a constant expression, use the `<constant>` element. If the type attribute
/// is specified, the element content is interpreted as a value of that type. Otherwise,
/// it is assumed to be an object. For instance:
///
/// ```xml
/// <constant>string_filter</constant>
/// <constant type='gchararray'>Hello, world</constant>
/// ```
///
/// To create a closure expression, use the `<closure>` element. The `function`
/// attribute specifies what function to use for the closure, and the `type`
/// attribute specifies its return type. The content of the element contains the
/// expressions for the parameters. For instance:
///
/// ```xml
/// <closure type='gchararray' function='combine_args_somehow'>
/// <constant type='gchararray'>File size:</constant>
/// <lookup type='GFile' name='size'>myfile</lookup>
/// </closure>
/// ```
///
/// To create a property binding, use the `<binding>` element in place of where a
/// `<property>` tag would ordinarily be used. The `name` and `object` attributes are
/// supported. The `name` attribute is required, and pertains to the applicable property
/// name. The `object` attribute is optional. If provided, it will use the specified object
/// as the `this` object when the expression is evaluated. Here is an example in which the
/// `label` property of a [`Label`][crate::Label] is bound to the `string` property of another arbitrary
/// object:
///
/// ```xml
/// <object class='GtkLabel'>
/// <binding name='label'>
/// <lookup name='string'>some_other_object</lookup>
/// </binding>
/// </object>
/// ```
///
/// This is an Abstract Base Class, you cannot instantiate it.
#[doc(alias = "GtkExpression")]
pub struct Expression(Shared<ffi::GtkExpression>);
match fn {
ref => |ptr| ffi::gtk_expression_ref(ptr),
unref => |ptr| ffi::gtk_expression_unref(ptr),
}
}
impl StaticType for Expression {
fn static_type() -> glib::Type {
unsafe { from_glib(ffi::gtk_expression_get_type()) }
}
}
impl Expression {
pub const NONE: Option<&'static Expression> = None;
/// Bind `target`'s property named `property` to `self`.
///
/// The value that `self` evaluates to is set via `g_object_set()` on
/// `target`. This is repeated whenever `self` changes to ensure that
/// the object's property stays synchronized with `self`.
///
/// If `self`'s evaluation fails, `target`'s `property` is not updated.
/// You can ensure that this doesn't happen by using a fallback
/// expression.
///
/// Note that this function takes ownership of `self`. If you want
/// to keep it around, you should `Gtk::Expression::ref()` it beforehand.
/// ## `target`
/// the target object to bind to
/// ## `property`
/// name of the property on `target` to bind to
/// ## `this_`
/// the this argument for
/// the evaluation of `self`
///
/// # Returns
///
/// a [`ExpressionWatch`][crate::ExpressionWatch]
#[doc(alias = "gtk_expression_bind")]
pub fn bind(
&self,
target: &impl IsA<glib::Object>,
property: &str,
this_: Option<&impl IsA<glib::Object>>,
) -> ExpressionWatch {
unsafe {
from_glib_none(ffi::gtk_expression_bind(
self.as_ref().to_glib_full(),
target.as_ref().to_glib_none().0,
property.to_glib_none().0,
this_.map(|p| p.as_ref()).to_glib_none().0,
))
}
}
/// Gets the `GType` that this expression evaluates to.
///
/// This type is constant and will not change over the lifetime
/// of this expression.
///
/// # Returns
///
/// The type returned from [`evaluate()`][Self::evaluate()]
#[doc(alias = "gtk_expression_get_value_type")]
#[doc(alias = "get_value_type")]
pub fn value_type(&self) -> glib::types::Type {
unsafe {
from_glib(ffi::gtk_expression_get_value_type(
self.as_ref().to_glib_none().0,
))
}
}
/// Checks if the expression is static.
///
/// A static expression will never change its result when
/// [`evaluate()`][Self::evaluate()] is called on it with the same arguments.
///
/// That means a call to [`watch()`][Self::watch()] is not necessary because
/// it will never trigger a notify.
///
/// # Returns
///
/// `TRUE` if the expression is static
#[doc(alias = "gtk_expression_is_static")]
pub fn is_static(&self) -> bool {
unsafe {
from_glib(ffi::gtk_expression_is_static(
self.as_ref().to_glib_none().0,
))
}
}
/// Watch the given `expression` for changes.
///
/// The @notify function will be called whenever the evaluation of `self`
/// may have changed.
///
/// GTK cannot guarantee that the evaluation did indeed change when the @notify
/// gets invoked, but it guarantees the opposite: When it did in fact change,
/// the @notify will be invoked.
/// ## `this_`
/// the `this` argument to
/// watch
/// ## `notify`
/// callback to invoke when the expression changes
///
/// # Returns
///
/// The newly installed watch. Note that the only
/// reference held to the watch will be released when the watch is unwatched
/// which can happen automatically, and not just via
/// [`ExpressionWatch::unwatch()`][crate::ExpressionWatch::unwatch()]. You should call `Gtk::ExpressionWatch::ref()`
/// if you want to keep the watch around.
#[doc(alias = "gtk_expression_watch")]
pub fn watch<P: Fn() + 'static>(
&self,
this_: Option<&impl IsA<glib::Object>>,
notify: P,
) -> ExpressionWatch {
let notify_data: Box_<P> = Box_::new(notify);
unsafe extern "C" fn notify_func<P: Fn() + 'static>(user_data: glib::ffi::gpointer) {
let callback = &*(user_data as *mut P);
(*callback)()
}
let notify = Some(notify_func::<P> as _);
unsafe extern "C" fn user_destroy_func<P: Fn() + 'static>(data: glib::ffi::gpointer) {
let _callback = Box_::from_raw(data as *mut P);
}
let destroy_call4 = Some(user_destroy_func::<P> as _);
let super_callback0: Box_<P> = notify_data;
unsafe {
from_glib_none(ffi::gtk_expression_watch(
self.as_ref().to_glib_none().0,
this_.map(|p| p.as_ref()).to_glib_none().0,
notify,
Box_::into_raw(super_callback0) as *mut _,
destroy_call4,
))
}
}
}