gtk4_macros/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
// Take a look at the license at the top of the repository in the LICENSE file.
//! # GTK 4 Macros
//!
//! The crate aims to provide useful macros to use with the GTK 4 Rust bindings.
mod attribute_parser;
#[cfg(feature = "blueprint")]
mod blueprint;
mod composite_template_derive;
mod template_callbacks_attribute;
mod util;
use proc_macro::TokenStream;
use proc_macro2::Span;
use syn::{parse_macro_input, DeriveInput, Error};
/// That macro includes and compiles blueprint file by path relative to project
/// rood
///
/// It expected to run inside composite_template_derive, not by users
#[cfg(feature = "blueprint")]
#[proc_macro]
#[doc(hidden)]
pub fn include_blueprint(input: TokenStream) -> TokenStream {
use quote::quote;
let tokens: Vec<_> = input.into_iter().collect();
if tokens.len() != 1 {
return Error::new(Span::call_site(), "File name not found")
.into_compile_error()
.into();
}
let root = std::env::var("CARGO_MANIFEST_DIR").unwrap_or_else(|_| ".".into());
let file_name = tokens[0].to_string();
let file_name = file_name.trim();
let file_name = &file_name[1..file_name.len() - 1];
let path = std::path::Path::new(&root).join(file_name);
if !path.exists() {
return Error::new(
Span::call_site(),
format!("{} not found", &path.to_string_lossy()),
)
.into_compile_error()
.into();
}
let path = path.to_string_lossy().to_string();
let template = match std::fs::read_to_string(&path) {
Ok(content) => blueprint::compile_blueprint(content.as_bytes()).unwrap(),
Err(err) => {
return Error::new(Span::call_site(), err)
.into_compile_error()
.into()
}
};
quote!({
// Compiler reruns macro if file changed
_ = include_str!(#path);
#template
})
.into()
}
/// Derive macro for using a composite template in a widget.
///
/// The `template` attribute specifies where the template should be loaded
/// from; it can be a `file`, a `resource`, or a `string`.
///
/// The `template_child` attribute is used to mark all internal widgets
/// we need to have programmatic access to. It can take two parameters:
/// - `id` which defaults to the item name if not defined
/// - `internal` whether the child should be accessible as an
/// “internal-child”, defaults to `false`
///
/// # Example
///
/// Specify that `MyWidget` is using a composite template and load the
/// template file the `composite_template.ui` file.
///
/// Then, in the [`ObjectSubclass`] implementation you will need to call
/// [`bind_template`] in the [`class_init`] function, and [`init_template`] in
/// [`instance_init`] function.
///
/// [`ObjectSubclass`]: ../glib/subclass/types/trait.ObjectSubclass.html
/// [`bind_template`]: ../gtk4/subclass/widget/trait.CompositeTemplate.html#tymethod.bind_template
/// [`class_init`]: ../glib/subclass/types/trait.ObjectSubclass.html#method.class_init
/// [`init_template`]: ../gtk4/subclass/prelude/trait.CompositeTemplateInitializingExt.html#tymethod.init_template
/// [`instance_init`]: ../glib/subclass/types/trait.ObjectSubclass.html#method.instance_init
///
/// ```no_run
/// # fn main() {}
/// use gtk::{glib, prelude::*, subclass::prelude::*};
///
/// mod imp {
/// use super::*;
///
/// #[derive(Debug, Default, gtk::CompositeTemplate)]
/// #[template(file = "test/template.ui")]
/// pub struct MyWidget {
/// #[template_child]
/// pub label: TemplateChild<gtk::Label>,
/// #[template_child(id = "my_button_id")]
/// pub button: TemplateChild<gtk::Button>,
/// }
///
/// #[glib::object_subclass]
/// impl ObjectSubclass for MyWidget {
/// const NAME: &'static str = "MyWidget";
/// type Type = super::MyWidget;
/// type ParentType = gtk::Box;
///
/// fn class_init(klass: &mut Self::Class) {
/// klass.bind_template();
/// }
///
/// fn instance_init(obj: &glib::subclass::InitializingObject<Self>) {
/// obj.init_template();
/// }
/// }
///
/// impl ObjectImpl for MyWidget {}
/// impl WidgetImpl for MyWidget {}
/// impl BoxImpl for MyWidget {}
/// }
///
/// glib::wrapper! {
/// pub struct MyWidget(ObjectSubclass<imp::MyWidget>) @extends gtk::Widget, gtk::Box;
/// }
///
/// impl MyWidget {
/// pub fn new() -> Self {
/// glib::Object::new()
/// }
/// }
/// ```
///
/// The [`CompositeTemplate`] macro can also be used with [Blueprint](https://jwestman.pages.gitlab.gnome.org/blueprint-compiler/)
/// if the feature `blueprint` is enabled.
/// you can use `string` or `file` relative to the project directory but not
/// `resource`
///
/// ```ignore
/// # fn main() {}
/// use gtk::{glib, prelude::*, subclass::prelude::*};
///
/// mod imp {
/// use super::*;
///
/// #[derive(Debug, Default, gtk::CompositeTemplate)]
/// #[template(string = "
/// template MyWidget : Widget {
/// Label label {
/// label: 'foobar';
/// }
///
/// Label my_label2 {
/// label: 'foobaz';
/// }
/// }
/// ")]
/// pub struct MyWidget {
/// #[template_child]
/// pub label: TemplateChild<gtk::Label>,
/// #[template_child(id = "my_label2")]
/// pub label2: gtk::TemplateChild<gtk::Label>,
/// }
///
/// #[glib::object_subclass]
/// impl ObjectSubclass for MyWidget {
/// const NAME: &'static str = "MyWidget";
/// type Type = super::MyWidget;
/// type ParentType = gtk::Widget;
/// fn class_init(klass: &mut Self::Class) {
/// klass.bind_template();
/// }
/// fn instance_init(obj: &glib::subclass::InitializingObject<Self>) {
/// obj.init_template();
/// }
/// }
///
/// impl ObjectImpl for MyWidget {
/// fn dispose(&self) {
/// while let Some(child) = self.obj().first_child() {
/// child.unparent();
/// }
/// }
/// }
/// impl WidgetImpl for MyWidget {}
/// }
///
/// glib::wrapper! {
/// pub struct MyWidget(ObjectSubclass<imp::MyWidget>) @extends gtk::Widget;
/// }
/// ```
#[proc_macro_derive(CompositeTemplate, attributes(template, template_child))]
pub fn composite_template_derive(input: TokenStream) -> TokenStream {
let input = parse_macro_input!(input as DeriveInput);
composite_template_derive::impl_composite_template(&input)
.unwrap_or_else(Error::into_compile_error)
.into()
}
/// Attribute macro for creating template callbacks from Rust methods.
///
/// Widgets with [`CompositeTemplate`] can then make use of these callbacks from
/// within their template XML definition. The attribute must be applied to an
/// `impl` statement of a struct. Functions marked as callbacks within the
/// `impl` will be stored in a static array. Then, in the [`ObjectSubclass`]
/// implementation you will need to call [`bind_template_callbacks`] and/or
/// [`bind_template_instance_callbacks`] in the [`class_init`] function.
///
/// Template callbacks can be specified on both a widget's public wrapper `impl`
/// or on its private subclass `impl`, or from external types. If callbacks are
/// specified on the public wrapper, then `bind_template_instance_callbacks`
/// must be called in `class_init`. If callbacks are specified on the private
/// subclass, then `bind_template_callbacks` must be called in `class_init`. To
/// use the callbacks from an external type, call [`T::bind_template_callbacks`]
/// in `class_init`, where `T` is the other type. See the example below for
/// usage of all three.
///
/// These callbacks can be bound using the `<signal>` or `<closure>` tags in the
/// template file. Note that the arguments and return type will only be checked
/// at run time when the method is invoked.
///
/// Template callbacks can optionally take `self` or `&self` as a first
/// parameter. In this case, the attribute `swapped="true"` will usually have to
/// be set on the `<signal>` or `<closure>` tag in order to invoke the function
/// correctly. Note that by-value `self` will only work with template callbacks
/// on the wrapper type.
///
/// Template callbacks that have no return value can also be `async`, in which
/// case the callback will be spawned as new future on the default main context
/// using [`glib::MainContext::spawn_local`]. Invoking the callback multiple
/// times will spawn an additional future each time it is invoked. This means
/// that multiple futures for an async callback can be active at any given time,
/// so care must be taken to avoid any kind of data races. Async callbacks may
/// prefer communicating back to the caller or widget over channels instead of
/// mutating internal widget state, or may want to make use of a locking flag to
/// ensure only one future can be active at once. Widgets may also want to show
/// a visual indicator such as a [`Spinner`] while the future is active to
/// communicate to the user that a background task is running.
///
/// The following options are supported on the attribute:
/// - `functions` makes all callbacks use the `function` attribute by default.
/// (see below)
///
/// The `template_callback` attribute is used to mark methods that will be
/// exposed to the template scope. It can take the following options:
/// - `name` renames the callback. Defaults to the function name if not defined.
/// - `function` ignores the first value when calling the callback and disallows
/// `self`. Useful for callbacks called from `<closure>` tags.
/// - `function = false` reverts the effects of `functions` used on the `impl`,
/// so the callback gets the first value and can take `self` again. Mainly useful
/// for callbacks that are invoked with `swapped="true"`.
///
/// The `rest` attribute can be placed on the last argument of a template
/// callback. This attribute must be used on an argument of type
/// <code>&\[[glib::Value]\]</code> and will pass in the remaining arguments.
/// The first and last values will be omitted from the slice if this callback is
/// a `function`.
///
/// Arguments and return types in template callbacks have some special
/// restrictions, similar to the restrictions on [`glib::closure`]. Each
/// argument's type must implement <code>[From]<Type> for
/// [glib::Value]</code>. The last argument can also be <code>&\[[glib::Value]\
/// ]</code> annotated with `#[rest]` as described above. The return type of
/// a callback, if present, must implement [`glib::FromValue`]. Type-checking of
/// inputs and outputs is done at run-time; if the argument types or return type
/// do not match the type of the signal or closure then the callback will panic.
/// To implement your own type checking or to use dynamic typing, an argument's
/// type can be left as a <code>&[glib::Value]</code>. This can also be used
/// if you need custom unboxing, such as if the target type does not implement
/// `FromValue`.
///
/// [`glib::closure`]: ../glib/macro.closure.html
/// [`glib::wrapper`]: ../glib/macro.wrapper.html
/// [`ObjectSubclass`]: ../glib/subclass/types/trait.ObjectSubclass.html
/// [`class_init`]: ../glib/subclass/types/trait.ObjectSubclass.html#method.class_init
/// [`bind_template_callbacks`]: ../gtk4/subclass/widget/trait.CompositeTemplateCallbacksClass.html#tymethod.bind_template_callbacks
/// [`bind_template_instance_callbacks`]: ../gtk4/subclass/widget/trait.CompositeTemplateInstanceCallbacksClass.html#tymethod.bind_template_instance_callbacks
/// [`T::bind_template_callbacks`]: ../gtk4/subclass/widget/trait.CompositeTemplateCallbacks.html#method.bind_template_callbacks
/// [`glib::FromValue`]: ../glib/value/trait.FromValue.html
/// [`glib::ToValue`]: ../glib/value/trait.ToValue.html
/// [glib::Value]: ../glib/value/struct.Value.html
/// [`glib::MainContext::spawn_local`]: ../glib/struct.MainContext.html#method.spawn_local
/// [`Spinner`]: ../gtk4/struct.Spinner.html
///
/// # Example
///
/// ```no_run
/// # fn main() {}
/// use gtk::{glib, prelude::*, subclass::prelude::*};
///
/// mod imp {
/// use super::*;
///
/// #[derive(Debug, Default, gtk::CompositeTemplate)]
/// #[template(file = "test/template_callbacks.ui")]
/// pub struct MyWidget {
/// #[template_child]
/// pub label: TemplateChild<gtk::Label>,
/// #[template_child(id = "my_button_id")]
/// pub button: TemplateChild<gtk::Button>,
/// }
///
/// #[glib::object_subclass]
/// impl ObjectSubclass for MyWidget {
/// const NAME: &'static str = "MyWidget";
/// type Type = super::MyWidget;
/// type ParentType = gtk::Box;
///
/// fn class_init(klass: &mut Self::Class) {
/// klass.bind_template();
/// // Bind the private callbacks
/// klass.bind_template_callbacks();
/// // Bind the public callbacks
/// klass.bind_template_instance_callbacks();
/// // Bind callbacks from another struct
/// super::Utility::bind_template_callbacks(klass);
/// }
///
/// fn instance_init(obj: &glib::subclass::InitializingObject<Self>) {
/// obj.init_template();
/// }
/// }
///
/// #[gtk::template_callbacks]
/// impl MyWidget {
/// #[template_callback]
/// fn button_clicked(&self, button: >k::Button) {
/// button.set_label("I was clicked!");
/// self.label.set_label("The button was clicked!");
/// }
/// #[template_callback(function, name = "strlen")]
/// fn string_length(s: &str) -> u64 {
/// s.len() as u64
/// }
/// }
///
/// impl ObjectImpl for MyWidget {}
/// impl WidgetImpl for MyWidget {}
/// impl BoxImpl for MyWidget {}
/// }
///
/// glib::wrapper! {
/// pub struct MyWidget(ObjectSubclass<imp::MyWidget>) @extends gtk::Widget, gtk::Box;
/// }
///
/// #[gtk::template_callbacks]
/// impl MyWidget {
/// pub fn new() -> Self {
/// glib::Object::new()
/// }
/// #[template_callback]
/// pub fn print_both_labels(&self) {
/// let imp = self.imp();
/// println!(
/// "{} {}",
/// imp.label.label(),
/// imp.button.label().unwrap().as_str()
/// );
/// }
/// }
///
/// pub struct Utility {}
///
/// #[gtk::template_callbacks(functions)]
/// impl Utility {
/// #[template_callback]
/// fn concat_strs(#[rest] values: &[glib::Value]) -> String {
/// let mut res = String::new();
/// for (index, value) in values.iter().enumerate() {
/// res.push_str(value.get::<&str>().unwrap_or_else(|e| {
/// panic!("Expected string value for argument {}: {}", index, e);
/// }));
/// }
/// res
/// }
/// #[template_callback(function = false)]
/// fn reset_label(label: >k::Label) {
/// label.set_label("");
/// }
/// }
/// ```
#[proc_macro_attribute]
pub fn template_callbacks(attr: TokenStream, item: TokenStream) -> TokenStream {
let args = parse_macro_input!(attr as template_callbacks_attribute::Args);
match syn::parse::<syn::ItemImpl>(item) {
Ok(input) => template_callbacks_attribute::impl_template_callbacks(input, args)
.unwrap_or_else(syn::Error::into_compile_error)
.into(),
Err(_) => Error::new(
Span::call_site(),
template_callbacks_attribute::WRONG_PLACE_MSG,
)
.into_compile_error()
.into(),
}
}
/// Attribute macro for declaring GTK tests.
///
/// Wraps the standard Rust [`test`] attribute with setup logic for GTK. All
/// tests that call into GTK must use this attribute. This attribute can also be
/// used on asynchronous functions; the asynchronous test will be run on the
/// main thread context.
///
/// # Technical Details
///
/// GTK is a single-threaded library, so Rust's normal multi-threaded test
/// behavior cannot be used. The `#[gtk::test]` attribute creates a main thread
/// for GTK and runs all tests on that thread. This has the side effect of
/// making all tests run serially, not in parallel.
///
/// [`test`]: <https://doc.rust-lang.org/std/prelude/v1/macro.test.html>
///
/// # Example
///
/// ```no_run
/// use gtk::prelude::*;
///
/// #[gtk::test]
/// fn test_button() {
/// let button = gtk::Button::new();
/// button.activate();
/// }
/// ```
#[proc_macro_attribute]
pub fn test(_attr: TokenStream, item: TokenStream) -> TokenStream {
use quote::quote;
match syn::parse::<syn::ItemFn>(item) {
Ok(mut input) => {
let crate_ident = util::crate_ident_new();
let block = &input.block;
let block = if input.sig.asyncness.is_some() {
quote! {
#crate_ident::glib::MainContext::default().block_on(async move {
#block
})
}
} else {
quote! { #block }
};
input.sig.asyncness.take();
let attrs = &input.attrs;
let vis = &input.vis;
let sig = &input.sig;
let test = quote! {
#(#attrs)*
#[::std::prelude::v1::test]
#vis #sig {
#crate_ident::test_synced(move || {
#block
})
}
};
test.into()
}
Err(_) => Error::new(
Span::call_site(),
"This macro should be used on a function definition",
)
.into_compile_error()
.into(),
}
}