glib/variant.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
// Take a look at the license at the top of the repository in the LICENSE file.
// rustdoc-stripper-ignore-next
//! `Variant` binding and helper traits.
//!
//! [`Variant`](struct.Variant.html) is an immutable dynamically-typed generic
//! container. Its type and value are defined at construction and never change.
//!
//! `Variant` types are described by [`VariantType`](../struct.VariantType.html)
//! "type strings".
//!
//! `GVariant` supports arbitrarily complex types built from primitives like integers, floating point
//! numbers, strings, arrays, tuples and dictionaries. See [`ToVariant#foreign-impls`] for
//! a full list of supported types. You may also implement [`ToVariant`] and [`FromVariant`]
//! manually, or derive them using the [`Variant`](derive@crate::Variant) derive macro.
//!
//! # Examples
//!
//! ```
//! use glib::prelude::*; // or `use gtk::prelude::*;`
//! use glib::variant::{Variant, FromVariant};
//! use std::collections::HashMap;
//!
//! // Using the `ToVariant` trait.
//! let num = 10.to_variant();
//!
//! // `is` tests the type of the value.
//! assert!(num.is::<i32>());
//!
//! // `get` tries to extract the value.
//! assert_eq!(num.get::<i32>(), Some(10));
//! assert_eq!(num.get::<u32>(), None);
//!
//! // `get_str` tries to borrow a string slice.
//! let hello = "Hello!".to_variant();
//! assert_eq!(hello.str(), Some("Hello!"));
//! assert_eq!(num.str(), None);
//!
//! // `fixed_array` tries to borrow a fixed size array (u8, bool, i16, etc.),
//! // rather than creating a deep copy which would be expensive for
//! // nontrivially sized arrays of fixed size elements.
//! // The test data here is the zstd compression header, which
//! // stands in for arbitrary binary data (e.g. not UTF-8).
//! let bufdata = b"\xFD\x2F\xB5\x28";
//! let bufv = glib::Variant::array_from_fixed_array(&bufdata[..]);
//! assert_eq!(bufv.fixed_array::<u8>().unwrap(), bufdata);
//! assert!(num.fixed_array::<u8>().is_err());
//!
//! // Variant carrying a Variant
//! let variant = Variant::from_variant(&hello);
//! let variant = variant.as_variant().unwrap();
//! assert_eq!(variant.str(), Some("Hello!"));
//!
//! // Variant carrying an array
//! let array = ["Hello", "there!"];
//! let variant = array.into_iter().collect::<Variant>();
//! assert_eq!(variant.n_children(), 2);
//! assert_eq!(variant.child_value(0).str(), Some("Hello"));
//! assert_eq!(variant.child_value(1).str(), Some("there!"));
//!
//! // You can also convert from and to a Vec
//! let variant = vec!["Hello", "there!"].to_variant();
//! assert_eq!(variant.n_children(), 2);
//! let vec = <Vec<String>>::from_variant(&variant).unwrap();
//! assert_eq!(vec[0], "Hello");
//!
//! // Conversion to and from HashMap and BTreeMap is also possible
//! let mut map: HashMap<u16, &str> = HashMap::new();
//! map.insert(1, "hi");
//! map.insert(2, "there");
//! let variant = map.to_variant();
//! assert_eq!(variant.n_children(), 2);
//! let map: HashMap<u16, String> = HashMap::from_variant(&variant).unwrap();
//! assert_eq!(map[&1], "hi");
//! assert_eq!(map[&2], "there");
//!
//! // And conversion to and from tuples.
//! let variant = ("hello", 42u16, vec![ "there", "you" ],).to_variant();
//! assert_eq!(variant.n_children(), 3);
//! assert_eq!(variant.type_().as_str(), "(sqas)");
//! let tuple = <(String, u16, Vec<String>)>::from_variant(&variant).unwrap();
//! assert_eq!(tuple.0, "hello");
//! assert_eq!(tuple.1, 42);
//! assert_eq!(tuple.2, &[ "there", "you"]);
//!
//! // `Option` is supported as well, through maybe types
//! let variant = Some("hello").to_variant();
//! assert_eq!(variant.n_children(), 1);
//! let mut s = <Option<String>>::from_variant(&variant).unwrap();
//! assert_eq!(s.unwrap(), "hello");
//! s = None;
//! let variant = s.to_variant();
//! assert_eq!(variant.n_children(), 0);
//! let s = <Option<String>>::from_variant(&variant).unwrap();
//! assert!(s.is_none());
//!
//! // Paths may be converted, too. Please note the portability warning above!
//! use std::path::{Path, PathBuf};
//! let path = Path::new("foo/bar");
//! let path_variant = path.to_variant();
//! assert_eq!(PathBuf::from_variant(&path_variant).as_deref(), Some(path));
//! ```
use std::{
borrow::Cow,
cmp::Ordering,
collections::{BTreeMap, HashMap},
fmt,
hash::{BuildHasher, Hash, Hasher},
mem, ptr, slice, str,
};
use crate::{
ffi, gobject_ffi, prelude::*, translate::*, Bytes, Type, VariantIter, VariantStrIter,
VariantTy, VariantType,
};
wrapper! {
// rustdoc-stripper-ignore-next
/// A generic immutable value capable of carrying various types.
///
/// See the [module documentation](index.html) for more details.
// rustdoc-stripper-ignore-next-stop
/// `GVariant` is a variant datatype; it can contain one or more values
/// along with information about the type of the values.
///
/// A `GVariant` may contain simple types, like an integer, or a boolean value;
/// or complex types, like an array of two strings, or a dictionary of key
/// value pairs. A `GVariant` is also immutable: once it’s been created neither
/// its type nor its content can be modified further.
///
/// `GVariant` is useful whenever data needs to be serialized, for example when
/// sending method parameters in D-Bus, or when saving settings using
/// [`GSettings`](../gio/class.Settings.html).
///
/// When creating a new `GVariant`, you pass the data you want to store in it
/// along with a string representing the type of data you wish to pass to it.
///
/// For instance, if you want to create a `GVariant` holding an integer value you
/// can use:
///
/// **⚠️ The following code is in c ⚠️**
///
/// ```c
/// GVariant *v = g_variant_new ("u", 40);
/// ```
///
/// The string `u` in the first argument tells `GVariant` that the data passed to
/// the constructor (`40`) is going to be an unsigned integer.
///
/// More advanced examples of `GVariant` in use can be found in documentation for
/// [`GVariant` format strings](gvariant-format-strings.html#pointers).
///
/// The range of possible values is determined by the type.
///
/// The type system used by `GVariant` is [type@GLib.VariantType].
///
/// `GVariant` instances always have a type and a value (which are given
/// at construction time). The type and value of a `GVariant` instance
/// can never change other than by the `GVariant` itself being
/// destroyed. A `GVariant` cannot contain a pointer.
///
/// `GVariant` is reference counted using `GLib::Variant::ref()` and
/// `GLib::Variant::unref()`. `GVariant` also has floating reference counts —
/// see [`ref_sink()`][Self::ref_sink()].
///
/// `GVariant` is completely threadsafe. A `GVariant` instance can be
/// concurrently accessed in any way from any number of threads without
/// problems.
///
/// `GVariant` is heavily optimised for dealing with data in serialized
/// form. It works particularly well with data located in memory-mapped
/// files. It can perform nearly all deserialization operations in a
/// small constant time, usually touching only a single memory page.
/// Serialized `GVariant` data can also be sent over the network.
///
/// `GVariant` is largely compatible with D-Bus. Almost all types of
/// `GVariant` instances can be sent over D-Bus. See [type@GLib.VariantType] for
/// exceptions. (However, `GVariant`’s serialization format is not the same
/// as the serialization format of a D-Bus message body: use
/// [GDBusMessage](../gio/class.DBusMessage.html), in the GIO library, for those.)
///
/// For space-efficiency, the `GVariant` serialization format does not
/// automatically include the variant’s length, type or endianness,
/// which must either be implied from context (such as knowledge that a
/// particular file format always contains a little-endian
/// `G_VARIANT_TYPE_VARIANT` which occupies the whole length of the file)
/// or supplied out-of-band (for instance, a length, type and/or endianness
/// indicator could be placed at the beginning of a file, network message
/// or network stream).
///
/// A `GVariant`’s size is limited mainly by any lower level operating
/// system constraints, such as the number of bits in `gsize`. For
/// example, it is reasonable to have a 2GB file mapped into memory
/// with `GLib::MappedFile`, and call `GLib::Variant::new_from_data()` on
/// it.
///
/// For convenience to C programmers, `GVariant` features powerful
/// varargs-based value construction and destruction. This feature is
/// designed to be embedded in other libraries.
///
/// There is a Python-inspired text language for describing `GVariant`
/// values. `GVariant` includes a printer for this language and a parser
/// with type inferencing.
///
/// ## Memory Use
///
/// `GVariant` tries to be quite efficient with respect to memory use.
/// This section gives a rough idea of how much memory is used by the
/// current implementation. The information here is subject to change
/// in the future.
///
/// The memory allocated by `GVariant` can be grouped into 4 broad
/// purposes: memory for serialized data, memory for the type
/// information cache, buffer management memory and memory for the
/// `GVariant` structure itself.
///
/// ## Serialized Data Memory
///
/// This is the memory that is used for storing `GVariant` data in
/// serialized form. This is what would be sent over the network or
/// what would end up on disk, not counting any indicator of the
/// endianness, or of the length or type of the top-level variant.
///
/// The amount of memory required to store a boolean is 1 byte. 16,
/// 32 and 64 bit integers and double precision floating point numbers
/// use their ‘natural’ size. Strings (including object path and
/// signature strings) are stored with a nul terminator, and as such
/// use the length of the string plus 1 byte.
///
/// ‘Maybe’ types use no space at all to represent the null value and
/// use the same amount of space (sometimes plus one byte) as the
/// equivalent non-maybe-typed value to represent the non-null case.
///
/// Arrays use the amount of space required to store each of their
/// members, concatenated. Additionally, if the items stored in an
/// array are not of a fixed-size (ie: strings, other arrays, etc)
/// then an additional framing offset is stored for each item. The
/// size of this offset is either 1, 2 or 4 bytes depending on the
/// overall size of the container. Additionally, extra padding bytes
/// are added as required for alignment of child values.
///
/// Tuples (including dictionary entries) use the amount of space
/// required to store each of their members, concatenated, plus one
/// framing offset (as per arrays) for each non-fixed-sized item in
/// the tuple, except for the last one. Additionally, extra padding
/// bytes are added as required for alignment of child values.
///
/// Variants use the same amount of space as the item inside of the
/// variant, plus 1 byte, plus the length of the type string for the
/// item inside the variant.
///
/// As an example, consider a dictionary mapping strings to variants.
/// In the case that the dictionary is empty, 0 bytes are required for
/// the serialization.
///
/// If we add an item ‘width’ that maps to the int32 value of 500 then
/// we will use 4 bytes to store the int32 (so 6 for the variant
/// containing it) and 6 bytes for the string. The variant must be
/// aligned to 8 after the 6 bytes of the string, so that’s 2 extra
/// bytes. 6 (string) + 2 (padding) + 6 (variant) is 14 bytes used
/// for the dictionary entry. An additional 1 byte is added to the
/// array as a framing offset making a total of 15 bytes.
///
/// If we add another entry, ‘title’ that maps to a nullable string
/// that happens to have a value of null, then we use 0 bytes for the
/// null value (and 3 bytes for the variant to contain it along with
/// its type string) plus 6 bytes for the string. Again, we need 2
/// padding bytes. That makes a total of 6 + 2 + 3 = 11 bytes.
///
/// We now require extra padding between the two items in the array.
/// After the 14 bytes of the first item, that’s 2 bytes required.
/// We now require 2 framing offsets for an extra two
/// bytes. 14 + 2 + 11 + 2 = 29 bytes to encode the entire two-item
/// dictionary.
///
/// ## Type Information Cache
///
/// For each `GVariant` type that currently exists in the program a type
/// information structure is kept in the type information cache. The
/// type information structure is required for rapid deserialization.
///
/// Continuing with the above example, if a `GVariant` exists with the
/// type `a{sv}` then a type information struct will exist for
/// `a{sv}`, `{sv}`, `s`, and `v`. Multiple uses of the same type
/// will share the same type information. Additionally, all
/// single-digit types are stored in read-only static memory and do
/// not contribute to the writable memory footprint of a program using
/// `GVariant`.
///
/// Aside from the type information structures stored in read-only
/// memory, there are two forms of type information. One is used for
/// container types where there is a single element type: arrays and
/// maybe types. The other is used for container types where there
/// are multiple element types: tuples and dictionary entries.
///
/// Array type info structures are `6 * sizeof (void *)`, plus the
/// memory required to store the type string itself. This means that
/// on 32-bit systems, the cache entry for `a{sv}` would require 30
/// bytes of memory (plus allocation overhead).
///
/// Tuple type info structures are `6 * sizeof (void *)`, plus `4 *
/// sizeof (void *)` for each item in the tuple, plus the memory
/// required to store the type string itself. A 2-item tuple, for
/// example, would have a type information structure that consumed
/// writable memory in the size of `14 * sizeof (void *)` (plus type
/// string) This means that on 32-bit systems, the cache entry for
/// `{sv}` would require 61 bytes of memory (plus allocation overhead).
///
/// This means that in total, for our `a{sv}` example, 91 bytes of
/// type information would be allocated.
///
/// The type information cache, additionally, uses a `GLib::HashTable` to
/// store and look up the cached items and stores a pointer to this
/// hash table in static storage. The hash table is freed when there
/// are zero items in the type cache.
///
/// Although these sizes may seem large it is important to remember
/// that a program will probably only have a very small number of
/// different types of values in it and that only one type information
/// structure is required for many different values of the same type.
///
/// ## Buffer Management Memory
///
/// `GVariant` uses an internal buffer management structure to deal
/// with the various different possible sources of serialized data
/// that it uses. The buffer is responsible for ensuring that the
/// correct call is made when the data is no longer in use by
/// `GVariant`. This may involve a `free()` or
/// even `GLib::MappedFile::unref()`.
///
/// One buffer management structure is used for each chunk of
/// serialized data. The size of the buffer management structure
/// is `4 * (void *)`. On 32-bit systems, that’s 16 bytes.
///
/// ## GVariant structure
///
/// The size of a `GVariant` structure is `6 * (void *)`. On 32-bit
/// systems, that’s 24 bytes.
///
/// `GVariant` structures only exist if they are explicitly created
/// with API calls. For example, if a `GVariant` is constructed out of
/// serialized data for the example given above (with the dictionary)
/// then although there are 9 individual values that comprise the
/// entire dictionary (two keys, two values, two variants containing
/// the values, two dictionary entries, plus the dictionary itself),
/// only 1 `GVariant` instance exists — the one referring to the
/// dictionary.
///
/// If calls are made to start accessing the other values then
/// `GVariant` instances will exist for those values only for as long
/// as they are in use (ie: until you call `GLib::Variant::unref()`). The
/// type information is shared. The serialized data and the buffer
/// management structure for that serialized data is shared by the
/// child.
///
/// ## Summary
///
/// To put the entire example together, for our dictionary mapping
/// strings to variants (with two entries, as given above), we are
/// using 91 bytes of memory for type information, 29 bytes of memory
/// for the serialized data, 16 bytes for buffer management and 24
/// bytes for the `GVariant` instance, or a total of 160 bytes, plus
/// allocation overhead. If we were to use [`child_value()`][Self::child_value()]
/// to access the two dictionary entries, we would use an additional 48
/// bytes. If we were to have other dictionaries of the same type, we
/// would use more memory for the serialized data and buffer
/// management for those dictionaries, but the type information would
/// be shared.
#[doc(alias = "GVariant")]
pub struct Variant(Shared<ffi::GVariant>);
match fn {
ref => |ptr| ffi::g_variant_ref_sink(ptr),
unref => |ptr| ffi::g_variant_unref(ptr),
}
}
impl StaticType for Variant {
#[inline]
fn static_type() -> Type {
Type::VARIANT
}
}
#[doc(hidden)]
impl crate::value::ValueType for Variant {
type Type = Variant;
}
#[doc(hidden)]
impl crate::value::ValueTypeOptional for Variant {}
#[doc(hidden)]
unsafe impl<'a> crate::value::FromValue<'a> for Variant {
type Checker = crate::value::GenericValueTypeOrNoneChecker<Self>;
unsafe fn from_value(value: &'a crate::Value) -> Self {
let ptr = gobject_ffi::g_value_dup_variant(value.to_glib_none().0);
debug_assert!(!ptr.is_null());
from_glib_full(ptr)
}
}
#[doc(hidden)]
impl crate::value::ToValue for Variant {
fn to_value(&self) -> crate::Value {
unsafe {
let mut value = crate::Value::from_type_unchecked(Variant::static_type());
gobject_ffi::g_value_take_variant(value.to_glib_none_mut().0, self.to_glib_full());
value
}
}
fn value_type(&self) -> crate::Type {
Variant::static_type()
}
}
#[doc(hidden)]
impl From<Variant> for crate::Value {
#[inline]
fn from(v: Variant) -> Self {
unsafe {
let mut value = crate::Value::from_type_unchecked(Variant::static_type());
gobject_ffi::g_value_take_variant(value.to_glib_none_mut().0, v.into_glib_ptr());
value
}
}
}
#[doc(hidden)]
impl crate::value::ToValueOptional for Variant {
fn to_value_optional(s: Option<&Self>) -> crate::Value {
let mut value = crate::Value::for_value_type::<Self>();
unsafe {
gobject_ffi::g_value_take_variant(value.to_glib_none_mut().0, s.to_glib_full());
}
value
}
}
// rustdoc-stripper-ignore-next
/// An error returned from the [`try_get`](struct.Variant.html#method.try_get) function
/// on a [`Variant`](struct.Variant.html) when the expected type does not match the actual type.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct VariantTypeMismatchError {
pub actual: VariantType,
pub expected: VariantType,
}
impl VariantTypeMismatchError {
pub fn new(actual: VariantType, expected: VariantType) -> Self {
Self { actual, expected }
}
}
impl fmt::Display for VariantTypeMismatchError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"Type mismatch: Expected '{}' got '{}'",
self.expected, self.actual
)
}
}
impl std::error::Error for VariantTypeMismatchError {}
impl Variant {
// rustdoc-stripper-ignore-next
/// Returns the type of the value.
// rustdoc-stripper-ignore-next-stop
/// Determines the type of @self.
///
/// The return value is valid for the lifetime of @self and must not
/// be freed.
///
/// # Returns
///
/// a #GVariantType
#[doc(alias = "g_variant_get_type")]
pub fn type_(&self) -> &VariantTy {
unsafe { VariantTy::from_ptr(ffi::g_variant_get_type(self.to_glib_none().0)) }
}
// rustdoc-stripper-ignore-next
/// Returns `true` if the type of the value corresponds to `T`.
#[inline]
#[doc(alias = "g_variant_is_of_type")]
pub fn is<T: StaticVariantType>(&self) -> bool {
self.is_type(&T::static_variant_type())
}
// rustdoc-stripper-ignore-next
/// Returns `true` if the type of the value corresponds to `type_`.
///
/// This is equivalent to [`self.type_().is_subtype_of(type_)`](VariantTy::is_subtype_of).
#[inline]
#[doc(alias = "g_variant_is_of_type")]
pub fn is_type(&self, type_: &VariantTy) -> bool {
unsafe {
from_glib(ffi::g_variant_is_of_type(
self.to_glib_none().0,
type_.to_glib_none().0,
))
}
}
// rustdoc-stripper-ignore-next
/// Returns the classification of the variant.
// rustdoc-stripper-ignore-next-stop
/// Classifies @self according to its top-level type.
///
/// # Returns
///
/// the #GVariantClass of @self
#[doc(alias = "g_variant_classify")]
pub fn classify(&self) -> crate::VariantClass {
unsafe { from_glib(ffi::g_variant_classify(self.to_glib_none().0)) }
}
// rustdoc-stripper-ignore-next
/// Tries to extract a value of type `T`.
///
/// Returns `Some` if `T` matches the variant's type.
// rustdoc-stripper-ignore-next-stop
/// Deconstructs a #GVariant instance.
///
/// Think of this function as an analogue to scanf().
///
/// The arguments that are expected by this function are entirely
/// determined by @format_string. @format_string also restricts the
/// permissible types of @self. It is an error to give a value with
/// an incompatible type. See the section on
/// [GVariant format strings](gvariant-format-strings.html).
/// Please note that the syntax of the format string is very likely to be
/// extended in the future.
///
/// @format_string determines the C types that are used for unpacking
/// the values and also determines if the values are copied or borrowed,
/// see the section on
/// [`GVariant` format strings](gvariant-format-strings.html#pointers).
/// ## `format_string`
/// a #GVariant format string
#[inline]
pub fn get<T: FromVariant>(&self) -> Option<T> {
T::from_variant(self)
}
// rustdoc-stripper-ignore-next
/// Tries to extract a value of type `T`.
pub fn try_get<T: FromVariant>(&self) -> Result<T, VariantTypeMismatchError> {
self.get().ok_or_else(|| {
VariantTypeMismatchError::new(
self.type_().to_owned(),
T::static_variant_type().into_owned(),
)
})
}
// rustdoc-stripper-ignore-next
/// Boxes value.
#[inline]
pub fn from_variant(value: &Variant) -> Self {
unsafe { from_glib_none(ffi::g_variant_new_variant(value.to_glib_none().0)) }
}
// rustdoc-stripper-ignore-next
/// Unboxes self.
///
/// Returns `Some` if self contains a `Variant`.
#[inline]
#[doc(alias = "get_variant")]
pub fn as_variant(&self) -> Option<Variant> {
unsafe { from_glib_full(ffi::g_variant_get_variant(self.to_glib_none().0)) }
}
// rustdoc-stripper-ignore-next
/// Reads a child item out of a container `Variant` instance.
///
/// # Panics
///
/// * if `self` is not a container type.
/// * if given `index` is larger than number of children.
// rustdoc-stripper-ignore-next-stop
/// Reads a child item out of a container #GVariant instance. This
/// includes variants, maybes, arrays, tuples and dictionary
/// entries. It is an error to call this function on any other type of
/// #GVariant.
///
/// It is an error if @index_ is greater than the number of child items
/// in the container. See g_variant_n_children().
///
/// The returned value is never floating. You should free it with
/// g_variant_unref() when you're done with it.
///
/// Note that values borrowed from the returned child are not guaranteed to
/// still be valid after the child is freed even if you still hold a reference
/// to @self, if @self has not been serialized at the time this function is
/// called. To avoid this, you can serialize @self by calling
/// g_variant_get_data() and optionally ignoring the return value.
///
/// There may be implementation specific restrictions on deeply nested values,
/// which would result in the unit tuple being returned as the child value,
/// instead of further nested children. #GVariant is guaranteed to handle
/// nesting up to at least 64 levels.
///
/// This function is O(1).
/// ## `index_`
/// the index of the child to fetch
///
/// # Returns
///
/// the child at the specified index
#[doc(alias = "get_child_value")]
#[doc(alias = "g_variant_get_child_value")]
#[must_use]
pub fn child_value(&self, index: usize) -> Variant {
assert!(self.is_container());
assert!(index < self.n_children());
unsafe { from_glib_full(ffi::g_variant_get_child_value(self.to_glib_none().0, index)) }
}
// rustdoc-stripper-ignore-next
/// Try to read a child item out of a container `Variant` instance.
///
/// It returns `None` if `self` is not a container type or if the given
/// `index` is larger than number of children.
pub fn try_child_value(&self, index: usize) -> Option<Variant> {
if !(self.is_container() && index < self.n_children()) {
return None;
}
let v =
unsafe { from_glib_full(ffi::g_variant_get_child_value(self.to_glib_none().0, index)) };
Some(v)
}
// rustdoc-stripper-ignore-next
/// Try to read a child item out of a container `Variant` instance.
///
/// It returns `Ok(None)` if `self` is not a container type or if the given
/// `index` is larger than number of children. An error is thrown if the
/// type does not match.
pub fn try_child_get<T: StaticVariantType + FromVariant>(
&self,
index: usize,
) -> Result<Option<T>, VariantTypeMismatchError> {
// TODO: In the future optimize this by using g_variant_get_child()
// directly to avoid allocating a GVariant.
self.try_child_value(index).map(|v| v.try_get()).transpose()
}
// rustdoc-stripper-ignore-next
/// Read a child item out of a container `Variant` instance.
///
/// # Panics
///
/// * if `self` is not a container type.
/// * if given `index` is larger than number of children.
/// * if the expected variant type does not match
pub fn child_get<T: StaticVariantType + FromVariant>(&self, index: usize) -> T {
// TODO: In the future optimize this by using g_variant_get_child()
// directly to avoid allocating a GVariant.
self.child_value(index).get().unwrap()
}
// rustdoc-stripper-ignore-next
/// Tries to extract a `&str`.
///
/// Returns `Some` if the variant has a string type (`s`, `o` or `g` type
/// strings).
#[doc(alias = "get_str")]
#[doc(alias = "g_variant_get_string")]
pub fn str(&self) -> Option<&str> {
unsafe {
match self.type_().as_str() {
"s" | "o" | "g" => {
let mut len = 0;
let ptr = ffi::g_variant_get_string(self.to_glib_none().0, &mut len);
if len == 0 {
Some("")
} else {
let ret = str::from_utf8_unchecked(slice::from_raw_parts(
ptr as *const u8,
len as _,
));
Some(ret)
}
}
_ => None,
}
}
}
// rustdoc-stripper-ignore-next
/// Tries to extract a `&[T]` from a variant of array type with a suitable element type.
///
/// Returns an error if the type is wrong.
// rustdoc-stripper-ignore-next-stop
/// Provides access to the serialized data for an array of fixed-sized
/// items.
///
/// @self must be an array with fixed-sized elements. Numeric types are
/// fixed-size, as are tuples containing only other fixed-sized types.
///
/// @element_size must be the size of a single element in the array,
/// as given by the section on
/// [serialized data memory](struct.Variant.html#serialized-data-memory).
///
/// In particular, arrays of these fixed-sized types can be interpreted
/// as an array of the given C type, with @element_size set to the size
/// the appropriate type:
/// - `G_VARIANT_TYPE_INT16` (etc.): #gint16 (etc.)
/// - `G_VARIANT_TYPE_BOOLEAN`: #guchar (not #gboolean!)
/// - `G_VARIANT_TYPE_BYTE`: #guint8
/// - `G_VARIANT_TYPE_HANDLE`: #guint32
/// - `G_VARIANT_TYPE_DOUBLE`: #gdouble
///
/// For example, if calling this function for an array of 32-bit integers,
/// you might say `sizeof(gint32)`. This value isn't used except for the purpose
/// of a double-check that the form of the serialized data matches the caller's
/// expectation.
///
/// @n_elements, which must be non-[`None`], is set equal to the number of
/// items in the array.
/// ## `element_size`
/// the size of each element
///
/// # Returns
///
/// a pointer to
/// the fixed array
#[doc(alias = "g_variant_get_fixed_array")]
pub fn fixed_array<T: FixedSizeVariantType>(&self) -> Result<&[T], VariantTypeMismatchError> {
unsafe {
let expected_ty = T::static_variant_type().as_array();
if self.type_() != expected_ty {
return Err(VariantTypeMismatchError {
actual: self.type_().to_owned(),
expected: expected_ty.into_owned(),
});
}
let mut n_elements = mem::MaybeUninit::uninit();
let ptr = ffi::g_variant_get_fixed_array(
self.to_glib_none().0,
n_elements.as_mut_ptr(),
mem::size_of::<T>(),
);
let n_elements = n_elements.assume_init();
if n_elements == 0 {
Ok(&[])
} else {
debug_assert!(!ptr.is_null());
Ok(slice::from_raw_parts(ptr as *const T, n_elements))
}
}
}
// rustdoc-stripper-ignore-next
/// Creates a new Variant array from children.
///
/// # Panics
///
/// This function panics if not all variants are of type `T`.
#[doc(alias = "g_variant_new_array")]
pub fn array_from_iter<T: StaticVariantType>(
children: impl IntoIterator<Item = Variant>,
) -> Self {
Self::array_from_iter_with_type(&T::static_variant_type(), children)
}
// rustdoc-stripper-ignore-next
/// Creates a new Variant array from children with the specified type.
///
/// # Panics
///
/// This function panics if not all variants are of type `type_`.
#[doc(alias = "g_variant_new_array")]
pub fn array_from_iter_with_type(
type_: &VariantTy,
children: impl IntoIterator<Item = impl AsRef<Variant>>,
) -> Self {
unsafe {
let mut builder = mem::MaybeUninit::uninit();
ffi::g_variant_builder_init(builder.as_mut_ptr(), type_.as_array().to_glib_none().0);
let mut builder = builder.assume_init();
for value in children.into_iter() {
let value = value.as_ref();
if ffi::g_variant_is_of_type(value.to_glib_none().0, type_.to_glib_none().0)
== ffi::GFALSE
{
ffi::g_variant_builder_clear(&mut builder);
assert!(value.is_type(type_));
}
ffi::g_variant_builder_add_value(&mut builder, value.to_glib_none().0);
}
from_glib_none(ffi::g_variant_builder_end(&mut builder))
}
}
// rustdoc-stripper-ignore-next
/// Creates a new Variant array from a fixed array.
#[doc(alias = "g_variant_new_fixed_array")]
pub fn array_from_fixed_array<T: FixedSizeVariantType>(array: &[T]) -> Self {
let type_ = T::static_variant_type();
unsafe {
from_glib_none(ffi::g_variant_new_fixed_array(
type_.as_ptr(),
array.as_ptr() as ffi::gconstpointer,
array.len(),
mem::size_of::<T>(),
))
}
}
// rustdoc-stripper-ignore-next
/// Creates a new Variant tuple from children.
#[doc(alias = "g_variant_new_tuple")]
pub fn tuple_from_iter(children: impl IntoIterator<Item = impl AsRef<Variant>>) -> Self {
unsafe {
let mut builder = mem::MaybeUninit::uninit();
ffi::g_variant_builder_init(builder.as_mut_ptr(), VariantTy::TUPLE.to_glib_none().0);
let mut builder = builder.assume_init();
for value in children.into_iter() {
ffi::g_variant_builder_add_value(&mut builder, value.as_ref().to_glib_none().0);
}
from_glib_none(ffi::g_variant_builder_end(&mut builder))
}
}
// rustdoc-stripper-ignore-next
/// Creates a new dictionary entry Variant.
///
/// [DictEntry] should be preferred over this when the types are known statically.
#[doc(alias = "g_variant_new_dict_entry")]
pub fn from_dict_entry(key: &Variant, value: &Variant) -> Self {
unsafe {
from_glib_none(ffi::g_variant_new_dict_entry(
key.to_glib_none().0,
value.to_glib_none().0,
))
}
}
// rustdoc-stripper-ignore-next
/// Creates a new maybe Variant.
#[doc(alias = "g_variant_new_maybe")]
pub fn from_maybe<T: StaticVariantType>(child: Option<&Variant>) -> Self {
let type_ = T::static_variant_type();
match child {
Some(child) => {
assert_eq!(type_, child.type_());
Self::from_some(child)
}
None => Self::from_none(&type_),
}
}
// rustdoc-stripper-ignore-next
/// Creates a new maybe Variant from a child.
#[doc(alias = "g_variant_new_maybe")]
pub fn from_some(child: &Variant) -> Self {
unsafe {
from_glib_none(ffi::g_variant_new_maybe(
ptr::null(),
child.to_glib_none().0,
))
}
}
// rustdoc-stripper-ignore-next
/// Creates a new maybe Variant with Nothing.
#[doc(alias = "g_variant_new_maybe")]
pub fn from_none(type_: &VariantTy) -> Self {
unsafe {
from_glib_none(ffi::g_variant_new_maybe(
type_.to_glib_none().0,
ptr::null_mut(),
))
}
}
// rustdoc-stripper-ignore-next
/// Extract the value of a maybe Variant.
///
/// Returns the child value, or `None` if the value is Nothing.
///
/// # Panics
///
/// Panics if the variant is not maybe-typed.
#[inline]
pub fn as_maybe(&self) -> Option<Variant> {
assert!(self.type_().is_maybe());
unsafe { from_glib_full(ffi::g_variant_get_maybe(self.to_glib_none().0)) }
}
// rustdoc-stripper-ignore-next
/// Pretty-print the contents of this variant in a human-readable form.
///
/// A variant can be recreated from this output via [`Variant::parse`].
// rustdoc-stripper-ignore-next-stop
/// Pretty-prints @self in the format understood by g_variant_parse().
///
/// The format is described [here](gvariant-text-format.html).
///
/// If @type_annotate is [`true`], then type information is included in
/// the output.
/// ## `type_annotate`
/// [`true`] if type information should be included in
/// the output
///
/// # Returns
///
/// a newly-allocated string holding the result.
#[doc(alias = "g_variant_print")]
pub fn print(&self, type_annotate: bool) -> crate::GString {
unsafe {
from_glib_full(ffi::g_variant_print(
self.to_glib_none().0,
type_annotate.into_glib(),
))
}
}
// rustdoc-stripper-ignore-next
/// Parses a GVariant from the text representation produced by [`print()`](Self::print).
#[doc(alias = "g_variant_parse")]
pub fn parse(type_: Option<&VariantTy>, text: &str) -> Result<Self, crate::Error> {
unsafe {
let mut error = ptr::null_mut();
let text = text.as_bytes().as_ptr_range();
let variant = ffi::g_variant_parse(
type_.to_glib_none().0,
text.start as *const _,
text.end as *const _,
ptr::null_mut(),
&mut error,
);
if variant.is_null() {
debug_assert!(!error.is_null());
Err(from_glib_full(error))
} else {
debug_assert!(error.is_null());
Ok(from_glib_full(variant))
}
}
}
// rustdoc-stripper-ignore-next
/// Constructs a new serialized-mode GVariant instance.
// rustdoc-stripper-ignore-next-stop
/// Constructs a new serialized-mode #GVariant instance. This is the
/// inner interface for creation of new serialized values that gets
/// called from various functions in gvariant.c.
///
/// A reference is taken on @bytes.
///
/// The data in @bytes must be aligned appropriately for the @type_ being loaded.
/// Otherwise this function will internally create a copy of the memory (since
/// GLib 2.60) or (in older versions) fail and exit the process.
/// ## `type_`
/// a #GVariantType
/// ## `bytes`
/// a #GBytes
/// ## `trusted`
/// if the contents of @bytes are trusted
///
/// # Returns
///
/// a new #GVariant with a floating reference
#[doc(alias = "g_variant_new_from_bytes")]
pub fn from_bytes<T: StaticVariantType>(bytes: &Bytes) -> Self {
Variant::from_bytes_with_type(bytes, &T::static_variant_type())
}
// rustdoc-stripper-ignore-next
/// Constructs a new serialized-mode GVariant instance.
///
/// This is the same as `from_bytes`, except that checks on the passed
/// data are skipped.
///
/// You should not use this function on data from external sources.
///
/// # Safety
///
/// Since the data is not validated, this is potentially dangerous if called
/// on bytes which are not guaranteed to have come from serialising another
/// Variant. The caller is responsible for ensuring bad data is not passed in.
pub unsafe fn from_bytes_trusted<T: StaticVariantType>(bytes: &Bytes) -> Self {
Variant::from_bytes_with_type_trusted(bytes, &T::static_variant_type())
}
// rustdoc-stripper-ignore-next
/// Constructs a new serialized-mode GVariant instance.
// rustdoc-stripper-ignore-next-stop
/// Creates a new #GVariant instance from serialized data.
///
/// @type_ is the type of #GVariant instance that will be constructed.
/// The interpretation of @data depends on knowing the type.
///
/// @data is not modified by this function and must remain valid with an
/// unchanging value until such a time as @notify is called with
/// @user_data. If the contents of @data change before that time then
/// the result is undefined.
///
/// If @data is trusted to be serialized data in normal form then
/// @trusted should be [`true`]. This applies to serialized data created
/// within this process or read from a trusted location on the disk (such
/// as a file installed in /usr/lib alongside your application). You
/// should set trusted to [`false`] if @data is read from the network, a
/// file in the user's home directory, etc.
///
/// If @data was not stored in this machine's native endianness, any multi-byte
/// numeric values in the returned variant will also be in non-native
/// endianness. g_variant_byteswap() can be used to recover the original values.
///
/// @notify will be called with @user_data when @data is no longer
/// needed. The exact time of this call is unspecified and might even be
/// before this function returns.
///
/// Note: @data must be backed by memory that is aligned appropriately for the
/// @type_ being loaded. Otherwise this function will internally create a copy of
/// the memory (since GLib 2.60) or (in older versions) fail and exit the
/// process.
/// ## `type_`
/// a definite #GVariantType
/// ## `data`
/// the serialized data
/// ## `trusted`
/// [`true`] if @data is definitely in normal form
/// ## `notify`
/// function to call when @data is no longer needed
///
/// # Returns
///
/// a new floating #GVariant of type @type_
#[doc(alias = "g_variant_new_from_data")]
pub fn from_data<T: StaticVariantType, A: AsRef<[u8]>>(data: A) -> Self {
Variant::from_data_with_type(data, &T::static_variant_type())
}
// rustdoc-stripper-ignore-next
/// Constructs a new serialized-mode GVariant instance.
///
/// This is the same as `from_data`, except that checks on the passed
/// data are skipped.
///
/// You should not use this function on data from external sources.
///
/// # Safety
///
/// Since the data is not validated, this is potentially dangerous if called
/// on bytes which are not guaranteed to have come from serialising another
/// Variant. The caller is responsible for ensuring bad data is not passed in.
pub unsafe fn from_data_trusted<T: StaticVariantType, A: AsRef<[u8]>>(data: A) -> Self {
Variant::from_data_with_type_trusted(data, &T::static_variant_type())
}
// rustdoc-stripper-ignore-next
/// Constructs a new serialized-mode GVariant instance with a given type.
#[doc(alias = "g_variant_new_from_bytes")]
pub fn from_bytes_with_type(bytes: &Bytes, type_: &VariantTy) -> Self {
unsafe {
from_glib_none(ffi::g_variant_new_from_bytes(
type_.as_ptr() as *const _,
bytes.to_glib_none().0,
false.into_glib(),
))
}
}
// rustdoc-stripper-ignore-next
/// Constructs a new serialized-mode GVariant instance with a given type.
///
/// This is the same as `from_bytes`, except that checks on the passed
/// data are skipped.
///
/// You should not use this function on data from external sources.
///
/// # Safety
///
/// Since the data is not validated, this is potentially dangerous if called
/// on bytes which are not guaranteed to have come from serialising another
/// Variant. The caller is responsible for ensuring bad data is not passed in.
pub unsafe fn from_bytes_with_type_trusted(bytes: &Bytes, type_: &VariantTy) -> Self {
from_glib_none(ffi::g_variant_new_from_bytes(
type_.as_ptr() as *const _,
bytes.to_glib_none().0,
true.into_glib(),
))
}
// rustdoc-stripper-ignore-next
/// Constructs a new serialized-mode GVariant instance with a given type.
#[doc(alias = "g_variant_new_from_data")]
pub fn from_data_with_type<A: AsRef<[u8]>>(data: A, type_: &VariantTy) -> Self {
unsafe {
let data = Box::new(data);
let (data_ptr, len) = {
let data = (*data).as_ref();
(data.as_ptr(), data.len())
};
unsafe extern "C" fn free_data<A: AsRef<[u8]>>(ptr: ffi::gpointer) {
let _ = Box::from_raw(ptr as *mut A);
}
from_glib_none(ffi::g_variant_new_from_data(
type_.as_ptr() as *const _,
data_ptr as ffi::gconstpointer,
len,
false.into_glib(),
Some(free_data::<A>),
Box::into_raw(data) as ffi::gpointer,
))
}
}
// rustdoc-stripper-ignore-next
/// Constructs a new serialized-mode GVariant instance with a given type.
///
/// This is the same as `from_data`, except that checks on the passed
/// data are skipped.
///
/// You should not use this function on data from external sources.
///
/// # Safety
///
/// Since the data is not validated, this is potentially dangerous if called
/// on bytes which are not guaranteed to have come from serialising another
/// Variant. The caller is responsible for ensuring bad data is not passed in.
pub unsafe fn from_data_with_type_trusted<A: AsRef<[u8]>>(data: A, type_: &VariantTy) -> Self {
let data = Box::new(data);
let (data_ptr, len) = {
let data = (*data).as_ref();
(data.as_ptr(), data.len())
};
unsafe extern "C" fn free_data<A: AsRef<[u8]>>(ptr: ffi::gpointer) {
let _ = Box::from_raw(ptr as *mut A);
}
from_glib_none(ffi::g_variant_new_from_data(
type_.as_ptr() as *const _,
data_ptr as ffi::gconstpointer,
len,
true.into_glib(),
Some(free_data::<A>),
Box::into_raw(data) as ffi::gpointer,
))
}
// rustdoc-stripper-ignore-next
/// Returns the serialized form of a GVariant instance.
// rustdoc-stripper-ignore-next-stop
/// Returns a pointer to the serialized form of a #GVariant instance.
/// The semantics of this function are exactly the same as
/// g_variant_get_data(), except that the returned #GBytes holds
/// a reference to the variant data.
///
/// # Returns
///
/// A new #GBytes representing the variant data
#[doc(alias = "get_data_as_bytes")]
#[doc(alias = "g_variant_get_data_as_bytes")]
pub fn data_as_bytes(&self) -> Bytes {
unsafe { from_glib_full(ffi::g_variant_get_data_as_bytes(self.to_glib_none().0)) }
}
// rustdoc-stripper-ignore-next
/// Returns the serialized form of a GVariant instance.
// rustdoc-stripper-ignore-next-stop
/// Returns a pointer to the serialized form of a #GVariant instance.
/// The returned data may not be in fully-normalised form if read from an
/// untrusted source. The returned data must not be freed; it remains
/// valid for as long as @self exists.
///
/// If @self is a fixed-sized value that was deserialized from a
/// corrupted serialized container then [`None`] may be returned. In this
/// case, the proper thing to do is typically to use the appropriate
/// number of nul bytes in place of @self. If @self is not fixed-sized
/// then [`None`] is never returned.
///
/// In the case that @self is already in serialized form, this function
/// is O(1). If the value is not already in serialized form,
/// serialization occurs implicitly and is approximately O(n) in the size
/// of the result.
///
/// To deserialize the data returned by this function, in addition to the
/// serialized data, you must know the type of the #GVariant, and (if the
/// machine might be different) the endianness of the machine that stored
/// it. As a result, file formats or network messages that incorporate
/// serialized #GVariants must include this information either
/// implicitly (for instance "the file always contains a
/// `G_VARIANT_TYPE_VARIANT` and it is always in little-endian order") or
/// explicitly (by storing the type and/or endianness in addition to the
/// serialized data).
///
/// # Returns
///
/// the serialized form of @self, or [`None`]
#[doc(alias = "g_variant_get_data")]
pub fn data(&self) -> &[u8] {
unsafe {
let selfv = self.to_glib_none();
let len = ffi::g_variant_get_size(selfv.0);
if len == 0 {
return &[];
}
let ptr = ffi::g_variant_get_data(selfv.0);
slice::from_raw_parts(ptr as *const _, len as _)
}
}
// rustdoc-stripper-ignore-next
/// Returns the size of serialized form of a GVariant instance.
// rustdoc-stripper-ignore-next-stop
/// Determines the number of bytes that would be required to store @self
/// with g_variant_store().
///
/// If @self has a fixed-sized type then this function always returned
/// that fixed size.
///
/// In the case that @self is already in serialized form or the size has
/// already been calculated (ie: this function has been called before)
/// then this function is O(1). Otherwise, the size is calculated, an
/// operation which is approximately O(n) in the number of values
/// involved.
///
/// # Returns
///
/// the serialized size of @self
#[doc(alias = "g_variant_get_size")]
pub fn size(&self) -> usize {
unsafe { ffi::g_variant_get_size(self.to_glib_none().0) }
}
// rustdoc-stripper-ignore-next
/// Stores the serialized form of a GVariant instance into the given slice.
///
/// The slice needs to be big enough.
// rustdoc-stripper-ignore-next-stop
/// Stores the serialized form of @self at @data. @data should be
/// large enough. See g_variant_get_size().
///
/// The stored data is in machine native byte order but may not be in
/// fully-normalised form if read from an untrusted source. See
/// g_variant_get_normal_form() for a solution.
///
/// As with g_variant_get_data(), to be able to deserialize the
/// serialized variant successfully, its type and (if the destination
/// machine might be different) its endianness must also be available.
///
/// This function is approximately O(n) in the size of @data.
#[doc(alias = "g_variant_store")]
pub fn store(&self, data: &mut [u8]) -> Result<usize, crate::BoolError> {
unsafe {
let size = ffi::g_variant_get_size(self.to_glib_none().0);
if data.len() < size {
return Err(bool_error!("Provided slice is too small"));
}
ffi::g_variant_store(self.to_glib_none().0, data.as_mut_ptr() as ffi::gpointer);
Ok(size)
}
}
// rustdoc-stripper-ignore-next
/// Returns a copy of the variant in normal form.
// rustdoc-stripper-ignore-next-stop
/// Gets a #GVariant instance that has the same value as @self and is
/// trusted to be in normal form.
///
/// If @self is already trusted to be in normal form then a new
/// reference to @self is returned.
///
/// If @self is not already trusted, then it is scanned to check if it
/// is in normal form. If it is found to be in normal form then it is
/// marked as trusted and a new reference to it is returned.
///
/// If @self is found not to be in normal form then a new trusted
/// #GVariant is created with the same value as @self. The non-normal parts of
/// @self will be replaced with default values which are guaranteed to be in
/// normal form.
///
/// It makes sense to call this function if you've received #GVariant
/// data from untrusted sources and you want to ensure your serialized
/// output is definitely in normal form.
///
/// If @self is already in normal form, a new reference will be returned
/// (which will be floating if @self is floating). If it is not in normal form,
/// the newly created #GVariant will be returned with a single non-floating
/// reference. Typically, g_variant_take_ref() should be called on the return
/// value from this function to guarantee ownership of a single non-floating
/// reference to it.
///
/// # Returns
///
/// a trusted #GVariant
#[doc(alias = "g_variant_get_normal_form")]
#[must_use]
pub fn normal_form(&self) -> Self {
unsafe { from_glib_full(ffi::g_variant_get_normal_form(self.to_glib_none().0)) }
}
// rustdoc-stripper-ignore-next
/// Returns a copy of the variant in the opposite endianness.
// rustdoc-stripper-ignore-next-stop
/// Performs a byteswapping operation on the contents of @self. The
/// result is that all multi-byte numeric data contained in @self is
/// byteswapped. That includes 16, 32, and 64bit signed and unsigned
/// integers as well as file handles and double precision floating point
/// values.
///
/// This function is an identity mapping on any value that does not
/// contain multi-byte numeric data. That include strings, booleans,
/// bytes and containers containing only these things (recursively).
///
/// While this function can safely handle untrusted, non-normal data, it is
/// recommended to check whether the input is in normal form beforehand, using
/// g_variant_is_normal_form(), and to reject non-normal inputs if your
/// application can be strict about what inputs it rejects.
///
/// The returned value is always in normal form and is marked as trusted.
/// A full, not floating, reference is returned.
///
/// # Returns
///
/// the byteswapped form of @self
#[doc(alias = "g_variant_byteswap")]
#[must_use]
pub fn byteswap(&self) -> Self {
unsafe { from_glib_full(ffi::g_variant_byteswap(self.to_glib_none().0)) }
}
// rustdoc-stripper-ignore-next
/// Determines the number of children in a container GVariant instance.
// rustdoc-stripper-ignore-next-stop
/// Determines the number of children in a container #GVariant instance.
/// This includes variants, maybes, arrays, tuples and dictionary
/// entries. It is an error to call this function on any other type of
/// #GVariant.
///
/// For variants, the return value is always 1. For values with maybe
/// types, it is always zero or one. For arrays, it is the length of the
/// array. For tuples it is the number of tuple items (which depends
/// only on the type). For dictionary entries, it is always 2
///
/// This function is O(1).
///
/// # Returns
///
/// the number of children in the container
#[doc(alias = "g_variant_n_children")]
pub fn n_children(&self) -> usize {
assert!(self.is_container());
unsafe { ffi::g_variant_n_children(self.to_glib_none().0) }
}
// rustdoc-stripper-ignore-next
/// Create an iterator over items in the variant.
///
/// Note that this heap allocates a variant for each element,
/// which can be particularly expensive for large arrays.
pub fn iter(&self) -> VariantIter {
assert!(self.is_container());
VariantIter::new(self.clone())
}
// rustdoc-stripper-ignore-next
/// Create an iterator over borrowed strings from a GVariant of type `as` (array of string).
///
/// This will fail if the variant is not an array of with
/// the expected child type.
///
/// A benefit of this API over [`Self::iter()`] is that it
/// minimizes allocation, and provides strongly typed access.
///
/// ```
/// # use glib::prelude::*;
/// let strs = &["foo", "bar"];
/// let strs_variant: glib::Variant = strs.to_variant();
/// for s in strs_variant.array_iter_str()? {
/// println!("{}", s);
/// }
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn array_iter_str(&self) -> Result<VariantStrIter, VariantTypeMismatchError> {
let child_ty = String::static_variant_type();
let actual_ty = self.type_();
let expected_ty = child_ty.as_array();
if actual_ty != expected_ty {
return Err(VariantTypeMismatchError {
actual: actual_ty.to_owned(),
expected: expected_ty.into_owned(),
});
}
Ok(VariantStrIter::new(self))
}
// rustdoc-stripper-ignore-next
/// Return whether this Variant is a container type.
// rustdoc-stripper-ignore-next-stop
/// Checks if @self is a container.
///
/// # Returns
///
/// [`true`] if @self is a container
#[doc(alias = "g_variant_is_container")]
pub fn is_container(&self) -> bool {
unsafe { from_glib(ffi::g_variant_is_container(self.to_glib_none().0)) }
}
// rustdoc-stripper-ignore-next
/// Return whether this Variant is in normal form.
// rustdoc-stripper-ignore-next-stop
/// Checks if @self is in normal form.
///
/// The main reason to do this is to detect if a given chunk of
/// serialized data is in normal form: load the data into a #GVariant
/// using g_variant_new_from_data() and then use this function to
/// check.
///
/// If @self is found to be in normal form then it will be marked as
/// being trusted. If the value was already marked as being trusted then
/// this function will immediately return [`true`].
///
/// There may be implementation specific restrictions on deeply nested values.
/// GVariant is guaranteed to handle nesting up to at least 64 levels.
///
/// # Returns
///
/// [`true`] if @self is in normal form
#[doc(alias = "g_variant_is_normal_form")]
pub fn is_normal_form(&self) -> bool {
unsafe { from_glib(ffi::g_variant_is_normal_form(self.to_glib_none().0)) }
}
// rustdoc-stripper-ignore-next
/// Return whether input string is a valid `VariantClass::ObjectPath`.
// rustdoc-stripper-ignore-next-stop
/// Determines if a given string is a valid D-Bus object path. You
/// should ensure that a string is a valid D-Bus object path before
/// passing it to g_variant_new_object_path().
///
/// A valid object path starts with `/` followed by zero or more
/// sequences of characters separated by `/` characters. Each sequence
/// must contain only the characters `[A-Z][a-z][0-9]_`. No sequence
/// (including the one following the final `/` character) may be empty.
/// ## `string`
/// a normal C nul-terminated string
///
/// # Returns
///
/// [`true`] if @string is a D-Bus object path
#[doc(alias = "g_variant_is_object_path")]
pub fn is_object_path(string: &str) -> bool {
unsafe { from_glib(ffi::g_variant_is_object_path(string.to_glib_none().0)) }
}
// rustdoc-stripper-ignore-next
/// Return whether input string is a valid `VariantClass::Signature`.
// rustdoc-stripper-ignore-next-stop
/// Determines if a given string is a valid D-Bus type signature. You
/// should ensure that a string is a valid D-Bus type signature before
/// passing it to g_variant_new_signature().
///
/// D-Bus type signatures consist of zero or more definite #GVariantType
/// strings in sequence.
/// ## `string`
/// a normal C nul-terminated string
///
/// # Returns
///
/// [`true`] if @string is a D-Bus type signature
#[doc(alias = "g_variant_is_signature")]
pub fn is_signature(string: &str) -> bool {
unsafe { from_glib(ffi::g_variant_is_signature(string.to_glib_none().0)) }
}
}
unsafe impl Send for Variant {}
unsafe impl Sync for Variant {}
impl fmt::Debug for Variant {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Variant")
.field("ptr", &ToGlibPtr::<*const _>::to_glib_none(self).0)
.field("type", &self.type_())
.field("value", &self.to_string())
.finish()
}
}
impl fmt::Display for Variant {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str(&self.print(true))
}
}
impl str::FromStr for Variant {
type Err = crate::Error;
fn from_str(s: &str) -> Result<Self, Self::Err> {
Self::parse(None, s)
}
}
impl PartialEq for Variant {
#[doc(alias = "g_variant_equal")]
fn eq(&self, other: &Self) -> bool {
unsafe {
from_glib(ffi::g_variant_equal(
ToGlibPtr::<*const _>::to_glib_none(self).0 as *const _,
ToGlibPtr::<*const _>::to_glib_none(other).0 as *const _,
))
}
}
}
impl Eq for Variant {}
impl PartialOrd for Variant {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
unsafe {
if ffi::g_variant_classify(self.to_glib_none().0)
!= ffi::g_variant_classify(other.to_glib_none().0)
{
return None;
}
if self.is_container() {
return None;
}
let res = ffi::g_variant_compare(
ToGlibPtr::<*const _>::to_glib_none(self).0 as *const _,
ToGlibPtr::<*const _>::to_glib_none(other).0 as *const _,
);
Some(res.cmp(&0))
}
}
}
impl Hash for Variant {
#[doc(alias = "g_variant_hash")]
fn hash<H: Hasher>(&self, state: &mut H) {
unsafe {
state.write_u32(ffi::g_variant_hash(
ToGlibPtr::<*const _>::to_glib_none(self).0 as *const _,
))
}
}
}
impl AsRef<Variant> for Variant {
#[inline]
fn as_ref(&self) -> &Self {
self
}
}
// rustdoc-stripper-ignore-next
/// Converts to `Variant`.
pub trait ToVariant {
// rustdoc-stripper-ignore-next
/// Returns a `Variant` clone of `self`.
fn to_variant(&self) -> Variant;
}
// rustdoc-stripper-ignore-next
/// Extracts a value.
pub trait FromVariant: Sized + StaticVariantType {
// rustdoc-stripper-ignore-next
/// Tries to extract a value.
///
/// Returns `Some` if the variant's type matches `Self`.
fn from_variant(variant: &Variant) -> Option<Self>;
}
// rustdoc-stripper-ignore-next
/// Returns `VariantType` of `Self`.
pub trait StaticVariantType {
// rustdoc-stripper-ignore-next
/// Returns the `VariantType` corresponding to `Self`.
fn static_variant_type() -> Cow<'static, VariantTy>;
}
impl StaticVariantType for Variant {
fn static_variant_type() -> Cow<'static, VariantTy> {
Cow::Borrowed(VariantTy::VARIANT)
}
}
impl<T: ?Sized + ToVariant> ToVariant for &T {
fn to_variant(&self) -> Variant {
<T as ToVariant>::to_variant(self)
}
}
impl<'a, T: Into<Variant> + Clone> From<&'a T> for Variant {
#[inline]
fn from(v: &'a T) -> Self {
v.clone().into()
}
}
impl<T: ?Sized + StaticVariantType> StaticVariantType for &T {
fn static_variant_type() -> Cow<'static, VariantTy> {
<T as StaticVariantType>::static_variant_type()
}
}
macro_rules! impl_numeric {
($name:ty, $typ:expr, $new_fn:ident, $get_fn:ident) => {
impl StaticVariantType for $name {
fn static_variant_type() -> Cow<'static, VariantTy> {
Cow::Borrowed($typ)
}
}
impl ToVariant for $name {
fn to_variant(&self) -> Variant {
unsafe { from_glib_none(ffi::$new_fn(*self)) }
}
}
impl From<$name> for Variant {
#[inline]
fn from(v: $name) -> Self {
v.to_variant()
}
}
impl FromVariant for $name {
fn from_variant(variant: &Variant) -> Option<Self> {
unsafe {
if variant.is::<Self>() {
Some(ffi::$get_fn(variant.to_glib_none().0))
} else {
None
}
}
}
}
};
}
impl_numeric!(u8, VariantTy::BYTE, g_variant_new_byte, g_variant_get_byte);
impl_numeric!(
i16,
VariantTy::INT16,
g_variant_new_int16,
g_variant_get_int16
);
impl_numeric!(
u16,
VariantTy::UINT16,
g_variant_new_uint16,
g_variant_get_uint16
);
impl_numeric!(
i32,
VariantTy::INT32,
g_variant_new_int32,
g_variant_get_int32
);
impl_numeric!(
u32,
VariantTy::UINT32,
g_variant_new_uint32,
g_variant_get_uint32
);
impl_numeric!(
i64,
VariantTy::INT64,
g_variant_new_int64,
g_variant_get_int64
);
impl_numeric!(
u64,
VariantTy::UINT64,
g_variant_new_uint64,
g_variant_get_uint64
);
impl_numeric!(
f64,
VariantTy::DOUBLE,
g_variant_new_double,
g_variant_get_double
);
impl StaticVariantType for () {
fn static_variant_type() -> Cow<'static, VariantTy> {
Cow::Borrowed(VariantTy::UNIT)
}
}
impl ToVariant for () {
fn to_variant(&self) -> Variant {
unsafe { from_glib_none(ffi::g_variant_new_tuple(ptr::null(), 0)) }
}
}
impl From<()> for Variant {
#[inline]
fn from(_: ()) -> Self {
().to_variant()
}
}
impl FromVariant for () {
fn from_variant(variant: &Variant) -> Option<Self> {
if variant.is::<Self>() {
Some(())
} else {
None
}
}
}
impl StaticVariantType for bool {
fn static_variant_type() -> Cow<'static, VariantTy> {
Cow::Borrowed(VariantTy::BOOLEAN)
}
}
impl ToVariant for bool {
fn to_variant(&self) -> Variant {
unsafe { from_glib_none(ffi::g_variant_new_boolean(self.into_glib())) }
}
}
impl From<bool> for Variant {
#[inline]
fn from(v: bool) -> Self {
v.to_variant()
}
}
impl FromVariant for bool {
fn from_variant(variant: &Variant) -> Option<Self> {
unsafe {
if variant.is::<Self>() {
Some(from_glib(ffi::g_variant_get_boolean(
variant.to_glib_none().0,
)))
} else {
None
}
}
}
}
impl StaticVariantType for String {
fn static_variant_type() -> Cow<'static, VariantTy> {
Cow::Borrowed(VariantTy::STRING)
}
}
impl ToVariant for String {
fn to_variant(&self) -> Variant {
self[..].to_variant()
}
}
impl From<String> for Variant {
#[inline]
fn from(s: String) -> Self {
s.to_variant()
}
}
impl FromVariant for String {
fn from_variant(variant: &Variant) -> Option<Self> {
variant.str().map(String::from)
}
}
impl StaticVariantType for str {
fn static_variant_type() -> Cow<'static, VariantTy> {
String::static_variant_type()
}
}
impl ToVariant for str {
fn to_variant(&self) -> Variant {
unsafe { from_glib_none(ffi::g_variant_new_take_string(self.to_glib_full())) }
}
}
impl From<&str> for Variant {
#[inline]
fn from(s: &str) -> Self {
s.to_variant()
}
}
impl StaticVariantType for std::path::PathBuf {
fn static_variant_type() -> Cow<'static, VariantTy> {
std::path::Path::static_variant_type()
}
}
impl ToVariant for std::path::PathBuf {
fn to_variant(&self) -> Variant {
self.as_path().to_variant()
}
}
impl From<std::path::PathBuf> for Variant {
#[inline]
fn from(p: std::path::PathBuf) -> Self {
p.to_variant()
}
}
impl FromVariant for std::path::PathBuf {
fn from_variant(variant: &Variant) -> Option<Self> {
unsafe {
let ptr = ffi::g_variant_get_bytestring(variant.to_glib_none().0);
Some(crate::translate::c_to_path_buf(ptr as *const _))
}
}
}
impl StaticVariantType for std::path::Path {
fn static_variant_type() -> Cow<'static, VariantTy> {
<&[u8]>::static_variant_type()
}
}
impl ToVariant for std::path::Path {
fn to_variant(&self) -> Variant {
let tmp = crate::translate::path_to_c(self);
unsafe { from_glib_none(ffi::g_variant_new_bytestring(tmp.as_ptr() as *const u8)) }
}
}
impl From<&std::path::Path> for Variant {
#[inline]
fn from(p: &std::path::Path) -> Self {
p.to_variant()
}
}
impl StaticVariantType for std::ffi::OsString {
fn static_variant_type() -> Cow<'static, VariantTy> {
std::ffi::OsStr::static_variant_type()
}
}
impl ToVariant for std::ffi::OsString {
fn to_variant(&self) -> Variant {
self.as_os_str().to_variant()
}
}
impl From<std::ffi::OsString> for Variant {
#[inline]
fn from(s: std::ffi::OsString) -> Self {
s.to_variant()
}
}
impl FromVariant for std::ffi::OsString {
fn from_variant(variant: &Variant) -> Option<Self> {
unsafe {
let ptr = ffi::g_variant_get_bytestring(variant.to_glib_none().0);
Some(crate::translate::c_to_os_string(ptr as *const _))
}
}
}
impl StaticVariantType for std::ffi::OsStr {
fn static_variant_type() -> Cow<'static, VariantTy> {
<&[u8]>::static_variant_type()
}
}
impl ToVariant for std::ffi::OsStr {
fn to_variant(&self) -> Variant {
let tmp = crate::translate::os_str_to_c(self);
unsafe { from_glib_none(ffi::g_variant_new_bytestring(tmp.as_ptr() as *const u8)) }
}
}
impl From<&std::ffi::OsStr> for Variant {
#[inline]
fn from(s: &std::ffi::OsStr) -> Self {
s.to_variant()
}
}
impl<T: StaticVariantType> StaticVariantType for Option<T> {
fn static_variant_type() -> Cow<'static, VariantTy> {
Cow::Owned(VariantType::new_maybe(&T::static_variant_type()))
}
}
impl<T: StaticVariantType + ToVariant> ToVariant for Option<T> {
fn to_variant(&self) -> Variant {
Variant::from_maybe::<T>(self.as_ref().map(|m| m.to_variant()).as_ref())
}
}
impl<T: StaticVariantType + Into<Variant>> From<Option<T>> for Variant {
#[inline]
fn from(v: Option<T>) -> Self {
Variant::from_maybe::<T>(v.map(|v| v.into()).as_ref())
}
}
impl<T: StaticVariantType + FromVariant> FromVariant for Option<T> {
fn from_variant(variant: &Variant) -> Option<Self> {
unsafe {
if variant.is::<Self>() {
let c_child = ffi::g_variant_get_maybe(variant.to_glib_none().0);
if !c_child.is_null() {
let child: Variant = from_glib_full(c_child);
Some(T::from_variant(&child))
} else {
Some(None)
}
} else {
None
}
}
}
}
impl<T: StaticVariantType> StaticVariantType for [T] {
fn static_variant_type() -> Cow<'static, VariantTy> {
T::static_variant_type().as_array()
}
}
impl<T: StaticVariantType + ToVariant> ToVariant for [T] {
fn to_variant(&self) -> Variant {
unsafe {
if self.is_empty() {
return from_glib_none(ffi::g_variant_new_array(
T::static_variant_type().to_glib_none().0,
ptr::null(),
0,
));
}
let mut builder = mem::MaybeUninit::uninit();
ffi::g_variant_builder_init(builder.as_mut_ptr(), VariantTy::ARRAY.to_glib_none().0);
let mut builder = builder.assume_init();
for value in self {
let value = value.to_variant();
ffi::g_variant_builder_add_value(&mut builder, value.to_glib_none().0);
}
from_glib_none(ffi::g_variant_builder_end(&mut builder))
}
}
}
impl<T: StaticVariantType + ToVariant> From<&[T]> for Variant {
#[inline]
fn from(s: &[T]) -> Self {
s.to_variant()
}
}
impl<T: FromVariant> FromVariant for Vec<T> {
fn from_variant(variant: &Variant) -> Option<Self> {
if !variant.is_container() {
return None;
}
let mut vec = Vec::with_capacity(variant.n_children());
for i in 0..variant.n_children() {
match variant.child_value(i).get() {
Some(child) => vec.push(child),
None => return None,
}
}
Some(vec)
}
}
impl<T: StaticVariantType + ToVariant> ToVariant for Vec<T> {
fn to_variant(&self) -> Variant {
self.as_slice().to_variant()
}
}
impl<T: StaticVariantType + Into<Variant>> From<Vec<T>> for Variant {
fn from(v: Vec<T>) -> Self {
unsafe {
if v.is_empty() {
return from_glib_none(ffi::g_variant_new_array(
T::static_variant_type().to_glib_none().0,
ptr::null(),
0,
));
}
let mut builder = mem::MaybeUninit::uninit();
ffi::g_variant_builder_init(builder.as_mut_ptr(), VariantTy::ARRAY.to_glib_none().0);
let mut builder = builder.assume_init();
for value in v {
let value = value.into();
ffi::g_variant_builder_add_value(&mut builder, value.to_glib_none().0);
}
from_glib_none(ffi::g_variant_builder_end(&mut builder))
}
}
}
impl<T: StaticVariantType> StaticVariantType for Vec<T> {
fn static_variant_type() -> Cow<'static, VariantTy> {
<[T]>::static_variant_type()
}
}
impl<K, V, H> FromVariant for HashMap<K, V, H>
where
K: FromVariant + Eq + Hash,
V: FromVariant,
H: BuildHasher + Default,
{
fn from_variant(variant: &Variant) -> Option<Self> {
if !variant.is_container() {
return None;
}
let mut map = HashMap::default();
for i in 0..variant.n_children() {
let entry = variant.child_value(i);
let key = match entry.child_value(0).get() {
Some(key) => key,
None => return None,
};
let val = match entry.child_value(1).get() {
Some(val) => val,
None => return None,
};
map.insert(key, val);
}
Some(map)
}
}
impl<K, V> FromVariant for BTreeMap<K, V>
where
K: FromVariant + Eq + Ord,
V: FromVariant,
{
fn from_variant(variant: &Variant) -> Option<Self> {
if !variant.is_container() {
return None;
}
let mut map = BTreeMap::default();
for i in 0..variant.n_children() {
let entry = variant.child_value(i);
let key = match entry.child_value(0).get() {
Some(key) => key,
None => return None,
};
let val = match entry.child_value(1).get() {
Some(val) => val,
None => return None,
};
map.insert(key, val);
}
Some(map)
}
}
impl<K, V> ToVariant for HashMap<K, V>
where
K: StaticVariantType + ToVariant + Eq + Hash,
V: StaticVariantType + ToVariant,
{
fn to_variant(&self) -> Variant {
unsafe {
if self.is_empty() {
return from_glib_none(ffi::g_variant_new_array(
DictEntry::<K, V>::static_variant_type().to_glib_none().0,
ptr::null(),
0,
));
}
let mut builder = mem::MaybeUninit::uninit();
ffi::g_variant_builder_init(builder.as_mut_ptr(), VariantTy::ARRAY.to_glib_none().0);
let mut builder = builder.assume_init();
for (key, value) in self {
let entry = DictEntry::new(key, value).to_variant();
ffi::g_variant_builder_add_value(&mut builder, entry.to_glib_none().0);
}
from_glib_none(ffi::g_variant_builder_end(&mut builder))
}
}
}
impl<K, V> From<HashMap<K, V>> for Variant
where
K: StaticVariantType + Into<Variant> + Eq + Hash,
V: StaticVariantType + Into<Variant>,
{
fn from(m: HashMap<K, V>) -> Self {
unsafe {
if m.is_empty() {
return from_glib_none(ffi::g_variant_new_array(
DictEntry::<K, V>::static_variant_type().to_glib_none().0,
ptr::null(),
0,
));
}
let mut builder = mem::MaybeUninit::uninit();
ffi::g_variant_builder_init(builder.as_mut_ptr(), VariantTy::ARRAY.to_glib_none().0);
let mut builder = builder.assume_init();
for (key, value) in m {
let entry = Variant::from(DictEntry::new(key, value));
ffi::g_variant_builder_add_value(&mut builder, entry.to_glib_none().0);
}
from_glib_none(ffi::g_variant_builder_end(&mut builder))
}
}
}
impl<K, V> ToVariant for BTreeMap<K, V>
where
K: StaticVariantType + ToVariant + Eq + Hash,
V: StaticVariantType + ToVariant,
{
fn to_variant(&self) -> Variant {
unsafe {
if self.is_empty() {
return from_glib_none(ffi::g_variant_new_array(
DictEntry::<K, V>::static_variant_type().to_glib_none().0,
ptr::null(),
0,
));
}
let mut builder = mem::MaybeUninit::uninit();
ffi::g_variant_builder_init(builder.as_mut_ptr(), VariantTy::ARRAY.to_glib_none().0);
let mut builder = builder.assume_init();
for (key, value) in self {
let entry = DictEntry::new(key, value).to_variant();
ffi::g_variant_builder_add_value(&mut builder, entry.to_glib_none().0);
}
from_glib_none(ffi::g_variant_builder_end(&mut builder))
}
}
}
impl<K, V> From<BTreeMap<K, V>> for Variant
where
K: StaticVariantType + Into<Variant> + Eq + Hash,
V: StaticVariantType + Into<Variant>,
{
fn from(m: BTreeMap<K, V>) -> Self {
unsafe {
if m.is_empty() {
return from_glib_none(ffi::g_variant_new_array(
DictEntry::<K, V>::static_variant_type().to_glib_none().0,
ptr::null(),
0,
));
}
let mut builder = mem::MaybeUninit::uninit();
ffi::g_variant_builder_init(builder.as_mut_ptr(), VariantTy::ARRAY.to_glib_none().0);
let mut builder = builder.assume_init();
for (key, value) in m {
let entry = Variant::from(DictEntry::new(key, value));
ffi::g_variant_builder_add_value(&mut builder, entry.to_glib_none().0);
}
from_glib_none(ffi::g_variant_builder_end(&mut builder))
}
}
}
/// A Dictionary entry.
///
/// While GVariant format allows a dictionary entry to be an independent type, typically you'll need
/// to use this in a dictionary, which is simply an array of dictionary entries. The following code
/// creates a dictionary:
///
/// ```
///# use glib::prelude::*; // or `use gtk::prelude::*;`
/// use glib::variant::{Variant, FromVariant, DictEntry};
///
/// let entries = [
/// DictEntry::new("uuid", 1000u32),
/// DictEntry::new("guid", 1001u32),
/// ];
/// let dict = entries.into_iter().collect::<Variant>();
/// assert_eq!(dict.n_children(), 2);
/// assert_eq!(dict.type_().as_str(), "a{su}");
/// ```
pub struct DictEntry<K, V> {
key: K,
value: V,
}
impl<K, V> DictEntry<K, V>
where
K: StaticVariantType,
V: StaticVariantType,
{
pub fn new(key: K, value: V) -> Self {
Self { key, value }
}
pub fn key(&self) -> &K {
&self.key
}
pub fn value(&self) -> &V {
&self.value
}
}
impl<K, V> FromVariant for DictEntry<K, V>
where
K: FromVariant,
V: FromVariant,
{
fn from_variant(variant: &Variant) -> Option<Self> {
if !variant.type_().is_subtype_of(VariantTy::DICT_ENTRY) {
return None;
}
let key = match variant.child_value(0).get() {
Some(key) => key,
None => return None,
};
let value = match variant.child_value(1).get() {
Some(value) => value,
None => return None,
};
Some(Self { key, value })
}
}
impl<K, V> ToVariant for DictEntry<K, V>
where
K: StaticVariantType + ToVariant,
V: StaticVariantType + ToVariant,
{
fn to_variant(&self) -> Variant {
Variant::from_dict_entry(&self.key.to_variant(), &self.value.to_variant())
}
}
impl<K, V> From<DictEntry<K, V>> for Variant
where
K: StaticVariantType + Into<Variant>,
V: StaticVariantType + Into<Variant>,
{
fn from(e: DictEntry<K, V>) -> Self {
Variant::from_dict_entry(&e.key.into(), &e.value.into())
}
}
impl ToVariant for Variant {
fn to_variant(&self) -> Variant {
Variant::from_variant(self)
}
}
impl FromVariant for Variant {
fn from_variant(variant: &Variant) -> Option<Self> {
variant.as_variant()
}
}
impl<K: StaticVariantType, V: StaticVariantType> StaticVariantType for DictEntry<K, V> {
fn static_variant_type() -> Cow<'static, VariantTy> {
Cow::Owned(VariantType::new_dict_entry(
&K::static_variant_type(),
&V::static_variant_type(),
))
}
}
fn static_variant_mapping<K, V>() -> Cow<'static, VariantTy>
where
K: StaticVariantType,
V: StaticVariantType,
{
use std::fmt::Write;
let key_type = K::static_variant_type();
let value_type = V::static_variant_type();
if key_type == VariantTy::STRING && value_type == VariantTy::VARIANT {
return Cow::Borrowed(VariantTy::VARDICT);
}
let mut builder = crate::GStringBuilder::default();
write!(builder, "a{{{}{}}}", key_type.as_str(), value_type.as_str()).unwrap();
Cow::Owned(VariantType::from_string(builder.into_string()).unwrap())
}
impl<K, V, H> StaticVariantType for HashMap<K, V, H>
where
K: StaticVariantType,
V: StaticVariantType,
H: BuildHasher + Default,
{
fn static_variant_type() -> Cow<'static, VariantTy> {
static_variant_mapping::<K, V>()
}
}
impl<K, V> StaticVariantType for BTreeMap<K, V>
where
K: StaticVariantType,
V: StaticVariantType,
{
fn static_variant_type() -> Cow<'static, VariantTy> {
static_variant_mapping::<K, V>()
}
}
macro_rules! tuple_impls {
($($len:expr => ($($n:tt $name:ident)+))+) => {
$(
impl<$($name),+> StaticVariantType for ($($name,)+)
where
$($name: StaticVariantType,)+
{
fn static_variant_type() -> Cow<'static, VariantTy> {
Cow::Owned(VariantType::new_tuple(&[
$(
$name::static_variant_type(),
)+
]))
}
}
impl<$($name),+> FromVariant for ($($name,)+)
where
$($name: FromVariant,)+
{
fn from_variant(variant: &Variant) -> Option<Self> {
if !variant.type_().is_subtype_of(VariantTy::TUPLE) {
return None;
}
Some((
$(
match variant.try_child_get::<$name>($n) {
Ok(Some(field)) => field,
_ => return None,
},
)+
))
}
}
impl<$($name),+> ToVariant for ($($name,)+)
where
$($name: ToVariant,)+
{
fn to_variant(&self) -> Variant {
unsafe {
let mut builder = mem::MaybeUninit::uninit();
ffi::g_variant_builder_init(builder.as_mut_ptr(), VariantTy::TUPLE.to_glib_none().0);
let mut builder = builder.assume_init();
$(
let field = self.$n.to_variant();
ffi::g_variant_builder_add_value(&mut builder, field.to_glib_none().0);
)+
from_glib_none(ffi::g_variant_builder_end(&mut builder))
}
}
}
impl<$($name),+> From<($($name,)+)> for Variant
where
$($name: Into<Variant>,)+
{
fn from(t: ($($name,)+)) -> Self {
unsafe {
let mut builder = mem::MaybeUninit::uninit();
ffi::g_variant_builder_init(builder.as_mut_ptr(), VariantTy::TUPLE.to_glib_none().0);
let mut builder = builder.assume_init();
$(
let field = t.$n.into();
ffi::g_variant_builder_add_value(&mut builder, field.to_glib_none().0);
)+
from_glib_none(ffi::g_variant_builder_end(&mut builder))
}
}
}
)+
}
}
tuple_impls! {
1 => (0 T0)
2 => (0 T0 1 T1)
3 => (0 T0 1 T1 2 T2)
4 => (0 T0 1 T1 2 T2 3 T3)
5 => (0 T0 1 T1 2 T2 3 T3 4 T4)
6 => (0 T0 1 T1 2 T2 3 T3 4 T4 5 T5)
7 => (0 T0 1 T1 2 T2 3 T3 4 T4 5 T5 6 T6)
8 => (0 T0 1 T1 2 T2 3 T3 4 T4 5 T5 6 T6 7 T7)
9 => (0 T0 1 T1 2 T2 3 T3 4 T4 5 T5 6 T6 7 T7 8 T8)
10 => (0 T0 1 T1 2 T2 3 T3 4 T4 5 T5 6 T6 7 T7 8 T8 9 T9)
11 => (0 T0 1 T1 2 T2 3 T3 4 T4 5 T5 6 T6 7 T7 8 T8 9 T9 10 T10)
12 => (0 T0 1 T1 2 T2 3 T3 4 T4 5 T5 6 T6 7 T7 8 T8 9 T9 10 T10 11 T11)
13 => (0 T0 1 T1 2 T2 3 T3 4 T4 5 T5 6 T6 7 T7 8 T8 9 T9 10 T10 11 T11 12 T12)
14 => (0 T0 1 T1 2 T2 3 T3 4 T4 5 T5 6 T6 7 T7 8 T8 9 T9 10 T10 11 T11 12 T12 13 T13)
15 => (0 T0 1 T1 2 T2 3 T3 4 T4 5 T5 6 T6 7 T7 8 T8 9 T9 10 T10 11 T11 12 T12 13 T13 14 T14)
16 => (0 T0 1 T1 2 T2 3 T3 4 T4 5 T5 6 T6 7 T7 8 T8 9 T9 10 T10 11 T11 12 T12 13 T13 14 T14 15 T15)
}
impl<T: Into<Variant> + StaticVariantType> FromIterator<T> for Variant {
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
Variant::array_from_iter::<T>(iter.into_iter().map(|v| v.into()))
}
}
/// Trait for fixed size variant types.
pub unsafe trait FixedSizeVariantType: StaticVariantType + Sized + Copy {}
unsafe impl FixedSizeVariantType for u8 {}
unsafe impl FixedSizeVariantType for i16 {}
unsafe impl FixedSizeVariantType for u16 {}
unsafe impl FixedSizeVariantType for i32 {}
unsafe impl FixedSizeVariantType for u32 {}
unsafe impl FixedSizeVariantType for i64 {}
unsafe impl FixedSizeVariantType for u64 {}
unsafe impl FixedSizeVariantType for f64 {}
unsafe impl FixedSizeVariantType for bool {}
/// Wrapper type for fixed size type arrays.
///
/// Converting this from/to a `Variant` is generally more efficient than working on the type
/// directly. This is especially important when deriving `Variant` trait implementations on custom
/// types.
///
/// This wrapper type can hold for example `Vec<u8>`, `Box<[u8]>` and similar types.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct FixedSizeVariantArray<A, T>(A, std::marker::PhantomData<T>)
where
A: AsRef<[T]>,
T: FixedSizeVariantType;
impl<A: AsRef<[T]>, T: FixedSizeVariantType> From<A> for FixedSizeVariantArray<A, T> {
fn from(array: A) -> Self {
FixedSizeVariantArray(array, std::marker::PhantomData)
}
}
impl<A: AsRef<[T]>, T: FixedSizeVariantType> FixedSizeVariantArray<A, T> {
pub fn into_inner(self) -> A {
self.0
}
}
impl<A: AsRef<[T]>, T: FixedSizeVariantType> std::ops::Deref for FixedSizeVariantArray<A, T> {
type Target = A;
#[inline]
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl<A: AsRef<[T]>, T: FixedSizeVariantType> std::ops::DerefMut for FixedSizeVariantArray<A, T> {
#[inline]
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
impl<A: AsRef<[T]>, T: FixedSizeVariantType> AsRef<A> for FixedSizeVariantArray<A, T> {
#[inline]
fn as_ref(&self) -> &A {
&self.0
}
}
impl<A: AsRef<[T]>, T: FixedSizeVariantType> AsMut<A> for FixedSizeVariantArray<A, T> {
#[inline]
fn as_mut(&mut self) -> &mut A {
&mut self.0
}
}
impl<A: AsRef<[T]>, T: FixedSizeVariantType> AsRef<[T]> for FixedSizeVariantArray<A, T> {
#[inline]
fn as_ref(&self) -> &[T] {
self.0.as_ref()
}
}
impl<A: AsRef<[T]> + AsMut<[T]>, T: FixedSizeVariantType> AsMut<[T]>
for FixedSizeVariantArray<A, T>
{
#[inline]
fn as_mut(&mut self) -> &mut [T] {
self.0.as_mut()
}
}
impl<A: AsRef<[T]>, T: FixedSizeVariantType> StaticVariantType for FixedSizeVariantArray<A, T> {
fn static_variant_type() -> Cow<'static, VariantTy> {
<[T]>::static_variant_type()
}
}
impl<A: AsRef<[T]> + for<'a> From<&'a [T]>, T: FixedSizeVariantType> FromVariant
for FixedSizeVariantArray<A, T>
{
fn from_variant(variant: &Variant) -> Option<Self> {
Some(FixedSizeVariantArray(
A::from(variant.fixed_array::<T>().ok()?),
std::marker::PhantomData,
))
}
}
impl<A: AsRef<[T]>, T: FixedSizeVariantType> ToVariant for FixedSizeVariantArray<A, T> {
fn to_variant(&self) -> Variant {
Variant::array_from_fixed_array(self.0.as_ref())
}
}
impl<A: AsRef<[T]>, T: FixedSizeVariantType> From<FixedSizeVariantArray<A, T>> for Variant {
#[doc(alias = "g_variant_new_from_data")]
fn from(a: FixedSizeVariantArray<A, T>) -> Self {
unsafe {
let data = Box::new(a.0);
let (data_ptr, len) = {
let data = (*data).as_ref();
(data.as_ptr(), mem::size_of_val(data))
};
unsafe extern "C" fn free_data<A: AsRef<[T]>, T: FixedSizeVariantType>(
ptr: ffi::gpointer,
) {
let _ = Box::from_raw(ptr as *mut A);
}
from_glib_none(ffi::g_variant_new_from_data(
T::static_variant_type().to_glib_none().0,
data_ptr as ffi::gconstpointer,
len,
false.into_glib(),
Some(free_data::<A, T>),
Box::into_raw(data) as ffi::gpointer,
))
}
}
}
/// A wrapper type around `Variant` handles.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Handle(pub i32);
impl From<i32> for Handle {
fn from(v: i32) -> Self {
Handle(v)
}
}
impl From<Handle> for i32 {
fn from(v: Handle) -> Self {
v.0
}
}
impl StaticVariantType for Handle {
fn static_variant_type() -> Cow<'static, VariantTy> {
Cow::Borrowed(VariantTy::HANDLE)
}
}
impl ToVariant for Handle {
fn to_variant(&self) -> Variant {
unsafe { from_glib_none(ffi::g_variant_new_handle(self.0)) }
}
}
impl From<Handle> for Variant {
#[inline]
fn from(h: Handle) -> Self {
h.to_variant()
}
}
impl FromVariant for Handle {
fn from_variant(variant: &Variant) -> Option<Self> {
unsafe {
if variant.is::<Self>() {
Some(Handle(ffi::g_variant_get_handle(variant.to_glib_none().0)))
} else {
None
}
}
}
}
/// A wrapper type around `Variant` object paths.
///
/// Values of these type are guaranteed to be valid object paths.
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct ObjectPath(String);
impl ObjectPath {
pub fn as_str(&self) -> &str {
&self.0
}
}
impl std::ops::Deref for ObjectPath {
type Target = str;
#[inline]
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl TryFrom<String> for ObjectPath {
type Error = crate::BoolError;
fn try_from(v: String) -> Result<Self, Self::Error> {
if !Variant::is_object_path(&v) {
return Err(bool_error!("Invalid object path"));
}
Ok(ObjectPath(v))
}
}
impl<'a> TryFrom<&'a str> for ObjectPath {
type Error = crate::BoolError;
fn try_from(v: &'a str) -> Result<Self, Self::Error> {
ObjectPath::try_from(String::from(v))
}
}
impl From<ObjectPath> for String {
fn from(v: ObjectPath) -> Self {
v.0
}
}
impl StaticVariantType for ObjectPath {
fn static_variant_type() -> Cow<'static, VariantTy> {
Cow::Borrowed(VariantTy::OBJECT_PATH)
}
}
impl ToVariant for ObjectPath {
fn to_variant(&self) -> Variant {
unsafe { from_glib_none(ffi::g_variant_new_object_path(self.0.to_glib_none().0)) }
}
}
impl From<ObjectPath> for Variant {
#[inline]
fn from(p: ObjectPath) -> Self {
let mut s = p.0;
s.push('\0');
unsafe { Self::from_data_trusted::<ObjectPath, _>(s) }
}
}
impl FromVariant for ObjectPath {
#[allow(unused_unsafe)]
fn from_variant(variant: &Variant) -> Option<Self> {
unsafe {
if variant.is::<Self>() {
Some(ObjectPath(String::from(variant.str().unwrap())))
} else {
None
}
}
}
}
/// A wrapper type around `Variant` signatures.
///
/// Values of these type are guaranteed to be valid signatures.
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Signature(String);
impl Signature {
pub fn as_str(&self) -> &str {
&self.0
}
}
impl std::ops::Deref for Signature {
type Target = str;
#[inline]
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl TryFrom<String> for Signature {
type Error = crate::BoolError;
fn try_from(v: String) -> Result<Self, Self::Error> {
if !Variant::is_signature(&v) {
return Err(bool_error!("Invalid signature"));
}
Ok(Signature(v))
}
}
impl<'a> TryFrom<&'a str> for Signature {
type Error = crate::BoolError;
fn try_from(v: &'a str) -> Result<Self, Self::Error> {
Signature::try_from(String::from(v))
}
}
impl From<Signature> for String {
fn from(v: Signature) -> Self {
v.0
}
}
impl StaticVariantType for Signature {
fn static_variant_type() -> Cow<'static, VariantTy> {
Cow::Borrowed(VariantTy::SIGNATURE)
}
}
impl ToVariant for Signature {
fn to_variant(&self) -> Variant {
unsafe { from_glib_none(ffi::g_variant_new_signature(self.0.to_glib_none().0)) }
}
}
impl From<Signature> for Variant {
#[inline]
fn from(s: Signature) -> Self {
let mut s = s.0;
s.push('\0');
unsafe { Self::from_data_trusted::<Signature, _>(s) }
}
}
impl FromVariant for Signature {
#[allow(unused_unsafe)]
fn from_variant(variant: &Variant) -> Option<Self> {
unsafe {
if variant.is::<Self>() {
Some(Signature(String::from(variant.str().unwrap())))
} else {
None
}
}
}
}
#[cfg(test)]
mod tests {
use std::collections::{HashMap, HashSet};
use super::*;
macro_rules! unsigned {
($name:ident, $ty:ident) => {
#[test]
fn $name() {
let mut n = $ty::MAX;
while n > 0 {
let v = n.to_variant();
assert_eq!(v.get(), Some(n));
n /= 2;
}
}
};
}
macro_rules! signed {
($name:ident, $ty:ident) => {
#[test]
fn $name() {
let mut n = $ty::MAX;
while n > 0 {
let v = n.to_variant();
assert_eq!(v.get(), Some(n));
let v = (-n).to_variant();
assert_eq!(v.get(), Some(-n));
n /= 2;
}
}
};
}
unsigned!(test_u8, u8);
unsigned!(test_u16, u16);
unsigned!(test_u32, u32);
unsigned!(test_u64, u64);
signed!(test_i16, i16);
signed!(test_i32, i32);
signed!(test_i64, i64);
#[test]
fn test_str() {
let s = "this is a test";
let v = s.to_variant();
assert_eq!(v.str(), Some(s));
assert_eq!(42u32.to_variant().str(), None);
}
#[test]
fn test_fixed_array() {
let b = b"this is a test";
let v = Variant::array_from_fixed_array(&b[..]);
assert_eq!(v.type_().as_str(), "ay");
assert_eq!(v.fixed_array::<u8>().unwrap(), b);
assert!(42u32.to_variant().fixed_array::<u8>().is_err());
let b = [1u32, 10u32, 100u32];
let v = Variant::array_from_fixed_array(&b);
assert_eq!(v.type_().as_str(), "au");
assert_eq!(v.fixed_array::<u32>().unwrap(), b);
assert!(v.fixed_array::<u8>().is_err());
let b = [true, false, true];
let v = Variant::array_from_fixed_array(&b);
assert_eq!(v.type_().as_str(), "ab");
assert_eq!(v.fixed_array::<bool>().unwrap(), b);
assert!(v.fixed_array::<u8>().is_err());
let b = [1.0f64, 2.0f64, 3.0f64];
let v = Variant::array_from_fixed_array(&b);
assert_eq!(v.type_().as_str(), "ad");
#[allow(clippy::float_cmp)]
{
assert_eq!(v.fixed_array::<f64>().unwrap(), b);
}
assert!(v.fixed_array::<u64>().is_err());
}
#[test]
fn test_fixed_variant_array() {
let b = FixedSizeVariantArray::from(&b"this is a test"[..]);
let v = b.to_variant();
assert_eq!(v.type_().as_str(), "ay");
assert_eq!(
&*v.get::<FixedSizeVariantArray<Vec<u8>, u8>>().unwrap(),
&*b
);
let b = FixedSizeVariantArray::from(vec![1i32, 2, 3]);
let v = b.to_variant();
assert_eq!(v.type_().as_str(), "ai");
assert_eq!(v.get::<FixedSizeVariantArray<Vec<i32>, i32>>().unwrap(), b);
}
#[test]
fn test_string() {
let s = String::from("this is a test");
let v = s.to_variant();
assert_eq!(v.get(), Some(s));
assert_eq!(v.normal_form(), v);
}
#[test]
fn test_eq() {
let v1 = "this is a test".to_variant();
let v2 = "this is a test".to_variant();
let v3 = "test".to_variant();
assert_eq!(v1, v2);
assert_ne!(v1, v3);
}
#[test]
fn test_hash() {
let v1 = "this is a test".to_variant();
let v2 = "this is a test".to_variant();
let v3 = "test".to_variant();
let mut set = HashSet::new();
set.insert(v1);
assert!(set.contains(&v2));
assert!(!set.contains(&v3));
assert_eq!(
<HashMap<&str, (&str, u8, u32)>>::static_variant_type().as_str(),
"a{s(syu)}"
);
}
#[test]
fn test_array() {
assert_eq!(<Vec<&str>>::static_variant_type().as_str(), "as");
assert_eq!(
<Vec<(&str, u8, u32)>>::static_variant_type().as_str(),
"a(syu)"
);
let a = ["foo", "bar", "baz"].to_variant();
assert_eq!(a.normal_form(), a);
assert_eq!(a.array_iter_str().unwrap().len(), 3);
let o = 0u32.to_variant();
assert!(o.array_iter_str().is_err());
}
#[test]
fn test_array_from_iter() {
let a = Variant::array_from_iter::<String>(
["foo", "bar", "baz"].into_iter().map(|s| s.to_variant()),
);
assert_eq!(a.type_().as_str(), "as");
assert_eq!(a.n_children(), 3);
assert_eq!(a.try_child_get::<String>(0), Ok(Some(String::from("foo"))));
assert_eq!(a.try_child_get::<String>(1), Ok(Some(String::from("bar"))));
assert_eq!(a.try_child_get::<String>(2), Ok(Some(String::from("baz"))));
}
#[test]
fn test_array_collect() {
let a = ["foo", "bar", "baz"].into_iter().collect::<Variant>();
assert_eq!(a.type_().as_str(), "as");
assert_eq!(a.n_children(), 3);
assert_eq!(a.try_child_get::<String>(0), Ok(Some(String::from("foo"))));
assert_eq!(a.try_child_get::<String>(1), Ok(Some(String::from("bar"))));
assert_eq!(a.try_child_get::<String>(2), Ok(Some(String::from("baz"))));
}
#[test]
fn test_tuple() {
assert_eq!(<(&str, u32)>::static_variant_type().as_str(), "(su)");
assert_eq!(<(&str, u8, u32)>::static_variant_type().as_str(), "(syu)");
let a = ("test", 1u8, 2u32).to_variant();
assert_eq!(a.normal_form(), a);
assert_eq!(a.try_child_get::<String>(0), Ok(Some(String::from("test"))));
assert_eq!(a.try_child_get::<u8>(1), Ok(Some(1u8)));
assert_eq!(a.try_child_get::<u32>(2), Ok(Some(2u32)));
assert_eq!(
a.try_get::<(String, u8, u32)>(),
Ok((String::from("test"), 1u8, 2u32))
);
}
#[test]
fn test_tuple_from_iter() {
let a = Variant::tuple_from_iter(["foo".to_variant(), 1u8.to_variant(), 2i32.to_variant()]);
assert_eq!(a.type_().as_str(), "(syi)");
assert_eq!(a.n_children(), 3);
assert_eq!(a.try_child_get::<String>(0), Ok(Some(String::from("foo"))));
assert_eq!(a.try_child_get::<u8>(1), Ok(Some(1u8)));
assert_eq!(a.try_child_get::<i32>(2), Ok(Some(2i32)));
}
#[test]
fn test_empty() {
assert_eq!(<()>::static_variant_type().as_str(), "()");
let a = ().to_variant();
assert_eq!(a.type_().as_str(), "()");
assert_eq!(a.get::<()>(), Some(()));
}
#[test]
fn test_maybe() {
assert!(<Option<()>>::static_variant_type().is_maybe());
let m1 = Some(()).to_variant();
assert_eq!(m1.type_().as_str(), "m()");
assert_eq!(m1.get::<Option<()>>(), Some(Some(())));
assert!(m1.as_maybe().is_some());
let m2 = None::<()>.to_variant();
assert!(m2.as_maybe().is_none());
}
#[test]
fn test_btreemap() {
assert_eq!(
<BTreeMap<String, u32>>::static_variant_type().as_str(),
"a{su}"
);
// Validate that BTreeMap adds entries to dict in sorted order
let mut m = BTreeMap::new();
let total = 20;
for n in 0..total {
let k = format!("v{n:04}");
m.insert(k, n as u32);
}
let v = m.to_variant();
let n = v.n_children();
assert_eq!(total, n);
for n in 0..total {
let child = v
.try_child_get::<DictEntry<String, u32>>(n)
.unwrap()
.unwrap();
assert_eq!(*child.value(), n as u32);
}
assert_eq!(BTreeMap::from_variant(&v).unwrap(), m);
}
#[test]
fn test_get() -> Result<(), Box<dyn std::error::Error>> {
let u = 42u32.to_variant();
assert!(u.get::<i32>().is_none());
assert_eq!(u.get::<u32>().unwrap(), 42);
assert!(u.try_get::<i32>().is_err());
// Test ? conversion
assert_eq!(u.try_get::<u32>()?, 42);
Ok(())
}
#[test]
fn test_byteswap() {
let u = 42u32.to_variant();
assert_eq!(u.byteswap().get::<u32>().unwrap(), 704643072u32);
assert_eq!(u.byteswap().byteswap().get::<u32>().unwrap(), 42u32);
}
#[test]
fn test_try_child() {
let a = ["foo"].to_variant();
assert!(a.try_child_value(0).is_some());
assert_eq!(a.try_child_get::<String>(0).unwrap().unwrap(), "foo");
assert_eq!(a.child_get::<String>(0), "foo");
assert!(a.try_child_get::<u32>(0).is_err());
assert!(a.try_child_value(1).is_none());
assert!(a.try_child_get::<String>(1).unwrap().is_none());
let u = 42u32.to_variant();
assert!(u.try_child_value(0).is_none());
assert!(u.try_child_get::<String>(0).unwrap().is_none());
}
#[test]
fn test_serialize() {
let a = ("test", 1u8, 2u32).to_variant();
let bytes = a.data_as_bytes();
let data = a.data();
let len = a.size();
assert_eq!(bytes.len(), len);
assert_eq!(data.len(), len);
let mut store_data = vec![0u8; len];
assert_eq!(a.store(&mut store_data).unwrap(), len);
assert_eq!(&bytes, data);
assert_eq!(&store_data, data);
let b = Variant::from_data::<(String, u8, u32), _>(store_data);
assert_eq!(a, b);
let c = Variant::from_bytes::<(String, u8, u32)>(&bytes);
assert_eq!(a, c);
}
#[test]
fn test_print_parse() {
let a = ("test", 1u8, 2u32).to_variant();
let a2 = Variant::parse(Some(a.type_()), &a.print(false)).unwrap();
assert_eq!(a, a2);
let a3: Variant = a.to_string().parse().unwrap();
assert_eq!(a, a3);
}
#[cfg(any(unix, windows))]
#[test]
fn test_paths() {
use std::path::PathBuf;
let path = PathBuf::from("foo");
let v = path.to_variant();
assert_eq!(PathBuf::from_variant(&v), Some(path));
}
#[test]
fn test_regression_from_variant_panics() {
let variant = "text".to_variant();
let hashmap: Option<HashMap<u64, u64>> = FromVariant::from_variant(&variant);
assert!(hashmap.is_none());
let variant = HashMap::<u64, u64>::new().to_variant();
let hashmap: Option<HashMap<u64, u64>> = FromVariant::from_variant(&variant);
assert!(hashmap.is_some());
}
}