1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
// This file was generated by gir (https://github.com/gtk-rs/gir)
// from gir-files (https://github.com/gtk-rs/gir-files)
// DO NOT EDIT
use crate::{Box, Euler, Point, Point3D, Quad, Quaternion, Ray, Rect, Sphere, Vec3, Vec4};
use glib::translate::*;
glib::wrapper! {
/// A structure capable of holding a 4x4 matrix.
///
/// The contents of the [`Matrix`][crate::Matrix] structure are private and
/// should never be accessed directly.
pub struct Matrix(BoxedInline<ffi::graphene_matrix_t>);
match fn {
copy => |ptr| glib::gobject_ffi::g_boxed_copy(ffi::graphene_matrix_get_type(), ptr as *mut _) as *mut ffi::graphene_matrix_t,
free => |ptr| glib::gobject_ffi::g_boxed_free(ffi::graphene_matrix_get_type(), ptr as *mut _),
type_ => || ffi::graphene_matrix_get_type(),
}
}
impl Matrix {
/// Decomposes a transformation matrix into its component transformations.
///
/// The algorithm for decomposing a matrix is taken from the
/// [CSS3 Transforms specification](http://dev.w3.org/csswg/css-transforms/);
/// specifically, the decomposition code is based on the equivalent code
/// published in "Graphics Gems II", edited by Jim Arvo, and
/// [available online](http://web.archive.org/web/20150512160205/http://tog.acm.org/resources/GraphicsGems/gemsii/unmatrix.c).
///
/// # Returns
///
/// `true` if the matrix could be decomposed
///
/// ## `translate`
/// the translation vector
///
/// ## `scale`
/// the scale vector
///
/// ## `rotate`
/// the rotation quaternion
///
/// ## `shear`
/// the shear vector
///
/// ## `perspective`
/// the perspective vector
#[doc(alias = "graphene_matrix_decompose")]
pub fn decompose(&self) -> Option<(Vec3, Vec3, Quaternion, Vec3, Vec4)> {
unsafe {
let mut translate = Vec3::uninitialized();
let mut scale = Vec3::uninitialized();
let mut rotate = Quaternion::uninitialized();
let mut shear = Vec3::uninitialized();
let mut perspective = Vec4::uninitialized();
let ret = ffi::graphene_matrix_decompose(
self.to_glib_none().0,
translate.to_glib_none_mut().0,
scale.to_glib_none_mut().0,
rotate.to_glib_none_mut().0,
shear.to_glib_none_mut().0,
perspective.to_glib_none_mut().0,
);
if ret {
Some((translate, scale, rotate, shear, perspective))
} else {
None
}
}
}
/// Computes the determinant of the given matrix.
///
/// # Returns
///
/// the value of the determinant
#[doc(alias = "graphene_matrix_determinant")]
pub fn determinant(&self) -> f32 {
unsafe { ffi::graphene_matrix_determinant(self.to_glib_none().0) }
}
#[doc(alias = "graphene_matrix_equal")]
fn equal(&self, b: &Matrix) -> bool {
unsafe { ffi::graphene_matrix_equal(self.to_glib_none().0, b.to_glib_none().0) }
}
/// Checks whether the two given [`Matrix`][crate::Matrix] matrices are
/// byte-by-byte equal.
///
/// While this function is faster than `graphene_matrix_equal()`, it
/// can also return false negatives, so it should be used in
/// conjuction with either `graphene_matrix_equal()` or
/// [`near()`][Self::near()]. For instance:
///
///
///
/// **⚠️ The following code is in C ⚠️**
///
/// ```C
/// if (graphene_matrix_equal_fast (a, b))
/// {
/// // matrices are definitely the same
/// }
/// else
/// {
/// if (graphene_matrix_equal (a, b))
/// // matrices contain the same values within an epsilon of FLT_EPSILON
/// else if (graphene_matrix_near (a, b, 0.0001))
/// // matrices contain the same values within an epsilon of 0.0001
/// else
/// // matrices are not equal
/// }
/// ```
/// ## `b`
/// a [`Matrix`][crate::Matrix]
///
/// # Returns
///
/// `true` if the matrices are equal. and `false` otherwise
#[doc(alias = "graphene_matrix_equal_fast")]
pub fn equal_fast(&self, b: &Matrix) -> bool {
unsafe { ffi::graphene_matrix_equal_fast(self.to_glib_none().0, b.to_glib_none().0) }
}
/// Retrieves the given row vector at `index_` inside a matrix.
/// ## `index_`
/// the index of the row vector, between 0 and 3
///
/// # Returns
///
///
/// ## `res`
/// return location for the [`Vec4`][crate::Vec4]
/// that is used to store the row vector
#[doc(alias = "graphene_matrix_get_row")]
#[doc(alias = "get_row")]
pub fn row(&self, index_: u32) -> Vec4 {
unsafe {
let mut res = Vec4::uninitialized();
ffi::graphene_matrix_get_row(self.to_glib_none().0, index_, res.to_glib_none_mut().0);
res
}
}
/// Retrieves the value at the given `row` and `col` index.
/// ## `row`
/// the row index
/// ## `col`
/// the column index
///
/// # Returns
///
/// the value at the given indices
#[doc(alias = "graphene_matrix_get_value")]
#[doc(alias = "get_value")]
pub fn value(&self, row: u32, col: u32) -> f32 {
unsafe { ffi::graphene_matrix_get_value(self.to_glib_none().0, row, col) }
}
/// Retrieves the scaling factor on the X axis in `self`.
///
/// # Returns
///
/// the value of the scaling factor
#[doc(alias = "graphene_matrix_get_x_scale")]
#[doc(alias = "get_x_scale")]
pub fn x_scale(&self) -> f32 {
unsafe { ffi::graphene_matrix_get_x_scale(self.to_glib_none().0) }
}
/// Retrieves the translation component on the X axis from `self`.
///
/// # Returns
///
/// the translation component
#[doc(alias = "graphene_matrix_get_x_translation")]
#[doc(alias = "get_x_translation")]
pub fn x_translation(&self) -> f32 {
unsafe { ffi::graphene_matrix_get_x_translation(self.to_glib_none().0) }
}
/// Retrieves the scaling factor on the Y axis in `self`.
///
/// # Returns
///
/// the value of the scaling factor
#[doc(alias = "graphene_matrix_get_y_scale")]
#[doc(alias = "get_y_scale")]
pub fn y_scale(&self) -> f32 {
unsafe { ffi::graphene_matrix_get_y_scale(self.to_glib_none().0) }
}
/// Retrieves the translation component on the Y axis from `self`.
///
/// # Returns
///
/// the translation component
#[doc(alias = "graphene_matrix_get_y_translation")]
#[doc(alias = "get_y_translation")]
pub fn y_translation(&self) -> f32 {
unsafe { ffi::graphene_matrix_get_y_translation(self.to_glib_none().0) }
}
/// Retrieves the scaling factor on the Z axis in `self`.
///
/// # Returns
///
/// the value of the scaling factor
#[doc(alias = "graphene_matrix_get_z_scale")]
#[doc(alias = "get_z_scale")]
pub fn z_scale(&self) -> f32 {
unsafe { ffi::graphene_matrix_get_z_scale(self.to_glib_none().0) }
}
/// Retrieves the translation component on the Z axis from `self`.
///
/// # Returns
///
/// the translation component
#[doc(alias = "graphene_matrix_get_z_translation")]
#[doc(alias = "get_z_translation")]
pub fn z_translation(&self) -> f32 {
unsafe { ffi::graphene_matrix_get_z_translation(self.to_glib_none().0) }
}
/// Linearly interpolates the two given [`Matrix`][crate::Matrix] by
/// interpolating the decomposed transformations separately.
///
/// If either matrix cannot be reduced to their transformations
/// then the interpolation cannot be performed, and this function
/// will return an identity matrix.
/// ## `b`
/// a [`Matrix`][crate::Matrix]
/// ## `factor`
/// the linear interpolation factor
///
/// # Returns
///
///
/// ## `res`
/// return location for the
/// interpolated matrix
#[doc(alias = "graphene_matrix_interpolate")]
#[must_use]
pub fn interpolate(&self, b: &Matrix, factor: f64) -> Matrix {
unsafe {
let mut res = Matrix::uninitialized();
ffi::graphene_matrix_interpolate(
self.to_glib_none().0,
b.to_glib_none().0,
factor,
res.to_glib_none_mut().0,
);
res
}
}
/// Inverts the given matrix.
///
/// # Returns
///
/// `true` if the matrix is invertible
///
/// ## `res`
/// return location for the
/// inverse matrix
#[doc(alias = "graphene_matrix_inverse")]
pub fn inverse(&self) -> Option<Matrix> {
unsafe {
let mut res = Matrix::uninitialized();
let ret = ffi::graphene_matrix_inverse(self.to_glib_none().0, res.to_glib_none_mut().0);
if ret {
Some(res)
} else {
None
}
}
}
/// Checks whether the given [`Matrix`][crate::Matrix] is compatible with an
/// a 2D affine transformation matrix.
///
/// # Returns
///
/// `true` if the matrix is compatible with an affine
/// transformation matrix
#[doc(alias = "graphene_matrix_is_2d")]
pub fn is_2d(&self) -> bool {
unsafe { ffi::graphene_matrix_is_2d(self.to_glib_none().0) }
}
/// Checks whether a [`Matrix`][crate::Matrix] has a visible back face.
///
/// # Returns
///
/// `true` if the back face of the matrix is visible
#[doc(alias = "graphene_matrix_is_backface_visible")]
pub fn is_backface_visible(&self) -> bool {
unsafe { ffi::graphene_matrix_is_backface_visible(self.to_glib_none().0) }
}
/// Checks whether the given [`Matrix`][crate::Matrix] is the identity matrix.
///
/// # Returns
///
/// `true` if the matrix is the identity matrix
#[doc(alias = "graphene_matrix_is_identity")]
pub fn is_identity(&self) -> bool {
unsafe { ffi::graphene_matrix_is_identity(self.to_glib_none().0) }
}
/// Checks whether a matrix is singular.
///
/// # Returns
///
/// `true` if the matrix is singular
#[doc(alias = "graphene_matrix_is_singular")]
pub fn is_singular(&self) -> bool {
unsafe { ffi::graphene_matrix_is_singular(self.to_glib_none().0) }
}
/// Multiplies two [`Matrix`][crate::Matrix].
///
/// Matrix multiplication is not commutative in general; the order of the factors matters.
/// The product of this multiplication is (`self` × `b`)
/// ## `b`
/// a [`Matrix`][crate::Matrix]
///
/// # Returns
///
///
/// ## `res`
/// return location for the matrix
/// result
#[doc(alias = "graphene_matrix_multiply")]
#[must_use]
pub fn multiply(&self, b: &Matrix) -> Matrix {
unsafe {
let mut res = Matrix::uninitialized();
ffi::graphene_matrix_multiply(
self.to_glib_none().0,
b.to_glib_none().0,
res.to_glib_none_mut().0,
);
res
}
}
/// Compares the two given [`Matrix`][crate::Matrix] matrices and checks
/// whether their values are within the given `epsilon` of each
/// other.
/// ## `b`
/// a [`Matrix`][crate::Matrix]
/// ## `epsilon`
/// the threshold between the two matrices
///
/// # Returns
///
/// `true` if the two matrices are near each other, and
/// `false` otherwise
#[doc(alias = "graphene_matrix_near")]
pub fn near(&self, b: &Matrix, epsilon: f32) -> bool {
unsafe { ffi::graphene_matrix_near(self.to_glib_none().0, b.to_glib_none().0, epsilon) }
}
/// Normalizes the given [`Matrix`][crate::Matrix].
///
/// # Returns
///
///
/// ## `res`
/// return location for the normalized matrix
#[doc(alias = "graphene_matrix_normalize")]
#[must_use]
pub fn normalize(&self) -> Matrix {
unsafe {
let mut res = Matrix::uninitialized();
ffi::graphene_matrix_normalize(self.to_glib_none().0, res.to_glib_none_mut().0);
res
}
}
/// Applies a perspective of `depth` to the matrix.
/// ## `depth`
/// the depth of the perspective
///
/// # Returns
///
///
/// ## `res`
/// return location for the
/// perspective matrix
#[doc(alias = "graphene_matrix_perspective")]
#[must_use]
pub fn perspective(&self, depth: f32) -> Matrix {
unsafe {
let mut res = Matrix::uninitialized();
ffi::graphene_matrix_perspective(
self.to_glib_none().0,
depth,
res.to_glib_none_mut().0,
);
res
}
}
/// Prints the contents of a matrix to the standard error stream.
///
/// This function is only useful for debugging; there are no guarantees
/// made on the format of the output.
#[doc(alias = "graphene_matrix_print")]
pub fn print(&self) {
unsafe {
ffi::graphene_matrix_print(self.to_glib_none().0);
}
}
/// Projects a [`Point`][crate::Point] using the matrix `self`.
/// ## `p`
/// a [`Point`][crate::Point]
///
/// # Returns
///
///
/// ## `res`
/// return location for the projected
/// point
#[doc(alias = "graphene_matrix_project_point")]
pub fn project_point(&self, p: &Point) -> Point {
unsafe {
let mut res = Point::uninitialized();
ffi::graphene_matrix_project_point(
self.to_glib_none().0,
p.to_glib_none().0,
res.to_glib_none_mut().0,
);
res
}
}
/// Projects all corners of a [`Rect`][crate::Rect] using the given matrix.
///
/// See also: [`project_point()`][Self::project_point()]
/// ## `r`
/// a [`Rect`][crate::Rect]
///
/// # Returns
///
///
/// ## `res`
/// return location for the projected
/// rectangle
#[doc(alias = "graphene_matrix_project_rect")]
pub fn project_rect(&self, r: &Rect) -> Quad {
unsafe {
let mut res = Quad::uninitialized();
ffi::graphene_matrix_project_rect(
self.to_glib_none().0,
r.to_glib_none().0,
res.to_glib_none_mut().0,
);
res
}
}
/// Projects a [`Rect`][crate::Rect] using the given matrix.
///
/// The resulting rectangle is the axis aligned bounding rectangle capable
/// of fully containing the projected rectangle.
/// ## `r`
/// a [`Rect`][crate::Rect]
///
/// # Returns
///
///
/// ## `res`
/// return location for the projected
/// rectangle
#[doc(alias = "graphene_matrix_project_rect_bounds")]
pub fn project_rect_bounds(&self, r: &Rect) -> Rect {
unsafe {
let mut res = Rect::uninitialized();
ffi::graphene_matrix_project_rect_bounds(
self.to_glib_none().0,
r.to_glib_none().0,
res.to_glib_none_mut().0,
);
res
}
}
/// Adds a rotation transformation to `self`, using the given `angle`
/// and `axis` vector.
///
/// This is the equivalent of calling [`new_rotate()`][Self::new_rotate()] and
/// then multiplying the matrix `self` with the rotation matrix.
/// ## `angle`
/// the rotation angle, in degrees
/// ## `axis`
/// the rotation axis, as a [`Vec3`][crate::Vec3]
#[doc(alias = "graphene_matrix_rotate")]
pub fn rotate(&mut self, angle: f32, axis: &Vec3) {
unsafe {
ffi::graphene_matrix_rotate(self.to_glib_none_mut().0, angle, axis.to_glib_none().0);
}
}
/// Adds a rotation transformation to `self`, using the given
/// [`Euler`][crate::Euler].
/// ## `e`
/// a rotation described by a [`Euler`][crate::Euler]
#[doc(alias = "graphene_matrix_rotate_euler")]
pub fn rotate_euler(&mut self, e: &Euler) {
unsafe {
ffi::graphene_matrix_rotate_euler(self.to_glib_none_mut().0, e.to_glib_none().0);
}
}
/// Adds a rotation transformation to `self`, using the given
/// [`Quaternion`][crate::Quaternion].
///
/// This is the equivalent of calling [`Quaternion::to_matrix()`][crate::Quaternion::to_matrix()] and
/// then multiplying `self` with the rotation matrix.
/// ## `q`
/// a rotation described by a [`Quaternion`][crate::Quaternion]
#[doc(alias = "graphene_matrix_rotate_quaternion")]
pub fn rotate_quaternion(&mut self, q: &Quaternion) {
unsafe {
ffi::graphene_matrix_rotate_quaternion(self.to_glib_none_mut().0, q.to_glib_none().0);
}
}
/// Adds a rotation transformation around the X axis to `self`, using
/// the given `angle`.
///
/// See also: [`rotate()`][Self::rotate()]
/// ## `angle`
/// the rotation angle, in degrees
#[doc(alias = "graphene_matrix_rotate_x")]
pub fn rotate_x(&mut self, angle: f32) {
unsafe {
ffi::graphene_matrix_rotate_x(self.to_glib_none_mut().0, angle);
}
}
/// Adds a rotation transformation around the Y axis to `self`, using
/// the given `angle`.
///
/// See also: [`rotate()`][Self::rotate()]
/// ## `angle`
/// the rotation angle, in degrees
#[doc(alias = "graphene_matrix_rotate_y")]
pub fn rotate_y(&mut self, angle: f32) {
unsafe {
ffi::graphene_matrix_rotate_y(self.to_glib_none_mut().0, angle);
}
}
/// Adds a rotation transformation around the Z axis to `self`, using
/// the given `angle`.
///
/// See also: [`rotate()`][Self::rotate()]
/// ## `angle`
/// the rotation angle, in degrees
#[doc(alias = "graphene_matrix_rotate_z")]
pub fn rotate_z(&mut self, angle: f32) {
unsafe {
ffi::graphene_matrix_rotate_z(self.to_glib_none_mut().0, angle);
}
}
/// Adds a scaling transformation to `self`, using the three
/// given factors.
///
/// This is the equivalent of calling [`new_scale()`][Self::new_scale()] and then
/// multiplying the matrix `self` with the scale matrix.
/// ## `factor_x`
/// scaling factor on the X axis
/// ## `factor_y`
/// scaling factor on the Y axis
/// ## `factor_z`
/// scaling factor on the Z axis
#[doc(alias = "graphene_matrix_scale")]
pub fn scale(&mut self, factor_x: f32, factor_y: f32, factor_z: f32) {
unsafe {
ffi::graphene_matrix_scale(self.to_glib_none_mut().0, factor_x, factor_y, factor_z);
}
}
/// Adds a skew of `factor` on the X and Y axis to the given matrix.
/// ## `factor`
/// skew factor
#[doc(alias = "graphene_matrix_skew_xy")]
pub fn skew_xy(&mut self, factor: f32) {
unsafe {
ffi::graphene_matrix_skew_xy(self.to_glib_none_mut().0, factor);
}
}
/// Adds a skew of `factor` on the X and Z axis to the given matrix.
/// ## `factor`
/// skew factor
#[doc(alias = "graphene_matrix_skew_xz")]
pub fn skew_xz(&mut self, factor: f32) {
unsafe {
ffi::graphene_matrix_skew_xz(self.to_glib_none_mut().0, factor);
}
}
/// Adds a skew of `factor` on the Y and Z axis to the given matrix.
/// ## `factor`
/// skew factor
#[doc(alias = "graphene_matrix_skew_yz")]
pub fn skew_yz(&mut self, factor: f32) {
unsafe {
ffi::graphene_matrix_skew_yz(self.to_glib_none_mut().0, factor);
}
}
/// Converts a [`Matrix`][crate::Matrix] to an affine transformation
/// matrix, if the given matrix is compatible.
///
/// The returned values have the following layout:
///
///
///
/// **⚠️ The following code is in plain ⚠️**
///
/// ```plain
/// ⎛ xx yx ⎞ ⎛ a b 0 ⎞
/// ⎜ xy yy ⎟ = ⎜ c d 0 ⎟
/// ⎝ x0 y0 ⎠ ⎝ tx ty 1 ⎠
/// ```
///
/// This function can be used to convert between a [`Matrix`][crate::Matrix]
/// and an affine matrix type from other libraries.
///
/// # Returns
///
/// `true` if the matrix is compatible with an affine
/// transformation matrix
///
/// ## `xx`
/// return location for the xx member
///
/// ## `yx`
/// return location for the yx member
///
/// ## `xy`
/// return location for the xy member
///
/// ## `yy`
/// return location for the yy member
///
/// ## `x_0`
/// return location for the x0 member
///
/// ## `y_0`
/// return location for the y0 member
#[doc(alias = "graphene_matrix_to_2d")]
pub fn to_2d(&self) -> Option<(f64, f64, f64, f64, f64, f64)> {
unsafe {
let mut xx = std::mem::MaybeUninit::uninit();
let mut yx = std::mem::MaybeUninit::uninit();
let mut xy = std::mem::MaybeUninit::uninit();
let mut yy = std::mem::MaybeUninit::uninit();
let mut x_0 = std::mem::MaybeUninit::uninit();
let mut y_0 = std::mem::MaybeUninit::uninit();
let ret = ffi::graphene_matrix_to_2d(
self.to_glib_none().0,
xx.as_mut_ptr(),
yx.as_mut_ptr(),
xy.as_mut_ptr(),
yy.as_mut_ptr(),
x_0.as_mut_ptr(),
y_0.as_mut_ptr(),
);
if ret {
Some((
xx.assume_init(),
yx.assume_init(),
xy.assume_init(),
yy.assume_init(),
x_0.assume_init(),
y_0.assume_init(),
))
} else {
None
}
}
}
/// Transforms each corner of a [`Rect`][crate::Rect] using the given matrix `self`.
///
/// The result is the axis aligned bounding rectangle containing the coplanar
/// quadrilateral.
///
/// See also: [`transform_point()`][Self::transform_point()]
/// ## `r`
/// a [`Rect`][crate::Rect]
///
/// # Returns
///
///
/// ## `res`
/// return location for the bounds
/// of the transformed rectangle
#[doc(alias = "graphene_matrix_transform_bounds")]
pub fn transform_bounds(&self, r: &Rect) -> Rect {
unsafe {
let mut res = Rect::uninitialized();
ffi::graphene_matrix_transform_bounds(
self.to_glib_none().0,
r.to_glib_none().0,
res.to_glib_none_mut().0,
);
res
}
}
/// Transforms the vertices of a [`Box`][crate::Box] using the given matrix `self`.
///
/// The result is the axis aligned bounding box containing the transformed
/// vertices.
/// ## `b`
/// a [`Box`][crate::Box]
///
/// # Returns
///
///
/// ## `res`
/// return location for the bounds
/// of the transformed box
#[doc(alias = "graphene_matrix_transform_box")]
pub fn transform_box(&self, b: &Box) -> Box {
unsafe {
let mut res = Box::uninitialized();
ffi::graphene_matrix_transform_box(
self.to_glib_none().0,
b.to_glib_none().0,
res.to_glib_none_mut().0,
);
res
}
}
/// Transforms the given [`Point`][crate::Point] using the matrix `self`.
///
/// Unlike [`transform_vec3()`][Self::transform_vec3()], this function will take into
/// account the fourth row vector of the [`Matrix`][crate::Matrix] when computing
/// the dot product of each row vector of the matrix.
///
/// See also: `graphene_simd4x4f_point3_mul()`
/// ## `p`
/// a [`Point`][crate::Point]
///
/// # Returns
///
///
/// ## `res`
/// return location for the
/// transformed [`Point`][crate::Point]
#[doc(alias = "graphene_matrix_transform_point")]
pub fn transform_point(&self, p: &Point) -> Point {
unsafe {
let mut res = Point::uninitialized();
ffi::graphene_matrix_transform_point(
self.to_glib_none().0,
p.to_glib_none().0,
res.to_glib_none_mut().0,
);
res
}
}
/// Transforms the given [`Point3D`][crate::Point3D] using the matrix `self`.
///
/// Unlike [`transform_vec3()`][Self::transform_vec3()], this function will take into
/// account the fourth row vector of the [`Matrix`][crate::Matrix] when computing
/// the dot product of each row vector of the matrix.
///
/// See also: `graphene_simd4x4f_point3_mul()`
/// ## `p`
/// a [`Point3D`][crate::Point3D]
///
/// # Returns
///
///
/// ## `res`
/// return location for the result
#[doc(alias = "graphene_matrix_transform_point3d")]
pub fn transform_point3d(&self, p: &Point3D) -> Point3D {
unsafe {
let mut res = Point3D::uninitialized();
ffi::graphene_matrix_transform_point3d(
self.to_glib_none().0,
p.to_glib_none().0,
res.to_glib_none_mut().0,
);
res
}
}
/// Transform a [`Ray`][crate::Ray] using the given matrix `self`.
/// ## `r`
/// a [`Ray`][crate::Ray]
///
/// # Returns
///
///
/// ## `res`
/// return location for the
/// transformed ray
#[doc(alias = "graphene_matrix_transform_ray")]
pub fn transform_ray(&self, r: &Ray) -> Ray {
unsafe {
let mut res = Ray::uninitialized();
ffi::graphene_matrix_transform_ray(
self.to_glib_none().0,
r.to_glib_none().0,
res.to_glib_none_mut().0,
);
res
}
}
/// Transforms each corner of a [`Rect`][crate::Rect] using the given matrix `self`.
///
/// The result is a coplanar quadrilateral.
///
/// See also: [`transform_point()`][Self::transform_point()]
/// ## `r`
/// a [`Rect`][crate::Rect]
///
/// # Returns
///
///
/// ## `res`
/// return location for the
/// transformed quad
#[doc(alias = "graphene_matrix_transform_rect")]
pub fn transform_rect(&self, r: &Rect) -> Quad {
unsafe {
let mut res = Quad::uninitialized();
ffi::graphene_matrix_transform_rect(
self.to_glib_none().0,
r.to_glib_none().0,
res.to_glib_none_mut().0,
);
res
}
}
/// Transforms a [`Sphere`][crate::Sphere] using the given matrix `self`. The
/// result is the bounding sphere containing the transformed sphere.
/// ## `s`
/// a [`Sphere`][crate::Sphere]
///
/// # Returns
///
///
/// ## `res`
/// return location for the bounds
/// of the transformed sphere
#[doc(alias = "graphene_matrix_transform_sphere")]
pub fn transform_sphere(&self, s: &Sphere) -> Sphere {
unsafe {
let mut res = Sphere::uninitialized();
ffi::graphene_matrix_transform_sphere(
self.to_glib_none().0,
s.to_glib_none().0,
res.to_glib_none_mut().0,
);
res
}
}
/// Transforms the given [`Vec3`][crate::Vec3] using the matrix `self`.
///
/// This function will multiply the X, Y, and Z row vectors of the matrix `self`
/// with the corresponding components of the vector `v`. The W row vector will
/// be ignored.
///
/// See also: `graphene_simd4x4f_vec3_mul()`
/// ## `v`
/// a [`Vec3`][crate::Vec3]
///
/// # Returns
///
///
/// ## `res`
/// return location for a [`Vec3`][crate::Vec3]
#[doc(alias = "graphene_matrix_transform_vec3")]
pub fn transform_vec3(&self, v: &Vec3) -> Vec3 {
unsafe {
let mut res = Vec3::uninitialized();
ffi::graphene_matrix_transform_vec3(
self.to_glib_none().0,
v.to_glib_none().0,
res.to_glib_none_mut().0,
);
res
}
}
/// Transforms the given [`Vec4`][crate::Vec4] using the matrix `self`.
///
/// See also: `graphene_simd4x4f_vec4_mul()`
/// ## `v`
/// a [`Vec4`][crate::Vec4]
///
/// # Returns
///
///
/// ## `res`
/// return location for a [`Vec4`][crate::Vec4]
#[doc(alias = "graphene_matrix_transform_vec4")]
pub fn transform_vec4(&self, v: &Vec4) -> Vec4 {
unsafe {
let mut res = Vec4::uninitialized();
ffi::graphene_matrix_transform_vec4(
self.to_glib_none().0,
v.to_glib_none().0,
res.to_glib_none_mut().0,
);
res
}
}
/// Adds a translation transformation to `self` using the coordinates
/// of the given [`Point3D`][crate::Point3D].
///
/// This is the equivalent of calling [`new_translate()`][Self::new_translate()] and
/// then multiplying `self` with the translation matrix.
/// ## `pos`
/// a [`Point3D`][crate::Point3D]
#[doc(alias = "graphene_matrix_translate")]
pub fn translate(&mut self, pos: &Point3D) {
unsafe {
ffi::graphene_matrix_translate(self.to_glib_none_mut().0, pos.to_glib_none().0);
}
}
/// Transposes the given matrix.
///
/// # Returns
///
///
/// ## `res`
/// return location for the
/// transposed matrix
#[doc(alias = "graphene_matrix_transpose")]
#[must_use]
pub fn transpose(&self) -> Matrix {
unsafe {
let mut res = Matrix::uninitialized();
ffi::graphene_matrix_transpose(self.to_glib_none().0, res.to_glib_none_mut().0);
res
}
}
/// Unprojects the given `point` using the `self` matrix and
/// a `modelview` matrix.
/// ## `modelview`
/// a [`Matrix`][crate::Matrix] for the modelview matrix; this is
/// the inverse of the modelview used when projecting the point
/// ## `point`
/// a [`Point3D`][crate::Point3D] with the coordinates of the point
///
/// # Returns
///
///
/// ## `res`
/// return location for the unprojected
/// point
#[doc(alias = "graphene_matrix_unproject_point3d")]
pub fn unproject_point3d(&self, modelview: &Matrix, point: &Point3D) -> Point3D {
unsafe {
let mut res = Point3D::uninitialized();
ffi::graphene_matrix_unproject_point3d(
self.to_glib_none().0,
modelview.to_glib_none().0,
point.to_glib_none().0,
res.to_glib_none_mut().0,
);
res
}
}
/// Undoes the transformation on the corners of a [`Rect`][crate::Rect] using the
/// given matrix, within the given axis aligned rectangular `bounds`.
/// ## `r`
/// a [`Rect`][crate::Rect]
/// ## `bounds`
/// the bounds of the transformation
///
/// # Returns
///
///
/// ## `res`
/// return location for the
/// untransformed rectangle
#[doc(alias = "graphene_matrix_untransform_bounds")]
pub fn untransform_bounds(&self, r: &Rect, bounds: &Rect) -> Rect {
unsafe {
let mut res = Rect::uninitialized();
ffi::graphene_matrix_untransform_bounds(
self.to_glib_none().0,
r.to_glib_none().0,
bounds.to_glib_none().0,
res.to_glib_none_mut().0,
);
res
}
}
/// Undoes the transformation of a [`Point`][crate::Point] using the
/// given matrix, within the given axis aligned rectangular `bounds`.
/// ## `p`
/// a [`Point`][crate::Point]
/// ## `bounds`
/// the bounds of the transformation
///
/// # Returns
///
/// `true` if the point was successfully untransformed
///
/// ## `res`
/// return location for the
/// untransformed point
#[doc(alias = "graphene_matrix_untransform_point")]
pub fn untransform_point(&self, p: &Point, bounds: &Rect) -> Option<Point> {
unsafe {
let mut res = Point::uninitialized();
let ret = ffi::graphene_matrix_untransform_point(
self.to_glib_none().0,
p.to_glib_none().0,
bounds.to_glib_none().0,
res.to_glib_none_mut().0,
);
if ret {
Some(res)
} else {
None
}
}
}
}
impl PartialEq for Matrix {
#[inline]
fn eq(&self, other: &Self) -> bool {
self.equal(other)
}
}
impl Eq for Matrix {}