glib/gobject/type_plugin.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
// Take a look at the license at the top of the repository in the LICENSE file.
use crate::{gobject_ffi, prelude::*, translate::*, InterfaceInfo, TypeInfo, TypeValueTable};
crate::wrapper! {
/// An interface that handles the lifecycle of dynamically loaded types.
///
/// The GObject type system supports dynamic loading of types.
/// It goes as follows:
///
/// 1. The type is initially introduced (usually upon loading the module
/// the first time, or by your main application that knows what modules
/// introduces what types), like this:
/// **⚠️ The following code is in c ⚠️**
///
/// ```c
/// new_type_id = g_type_register_dynamic (parent_type_id,
/// "TypeName",
/// new_type_plugin,
/// type_flags);
/// ```
/// where `new_type_plugin` is an implementation of the
/// `GTypePlugin` interface.
///
/// 2. The type's implementation is referenced, e.g. through
/// [func[`Object`][crate::Object].ref] or through [func[`Object`][crate::Object]]
/// (this is being called by [ctor[`Object`][crate::Object].new]) or through one of the above
/// done on a type derived from `new_type_id`.
///
/// 3. This causes the type system to load the type's implementation by calling
/// [method[`Object`][crate::Object].use] and [method[`Object`][crate::Object].complete_type_info]
/// on `new_type_plugin`.
///
/// 4. At some point the type's implementation isn't required anymore, e.g. after
/// [method[`Object`][crate::Object].unref] or [func[`Object`][crate::Object]]
/// (called when the reference count of an instance drops to zero).
///
/// 5. This causes the type system to throw away the information retrieved
/// from [method[`Object`][crate::Object].complete_type_info] and then it calls
/// [method[`Object`][crate::Object].unuse] on `new_type_plugin`.
///
/// 6. Things may repeat from the second step.
///
/// So basically, you need to implement a `GTypePlugin` type that
/// carries a use_count, once use_count goes from zero to one, you need
/// to load the implementation to successfully handle the upcoming
/// [method[`Object`][crate::Object].complete_type_info] call. Later, maybe after
/// succeeding use/unuse calls, once use_count drops to zero, you can
/// unload the implementation again. The type system makes sure to call
/// [method[`Object`][crate::Object].use] and [method[`Object`][crate::Object].complete_type_info]
/// again when the type is needed again.
///
/// [class[`Object`][crate::Object]] is an implementation of `GTypePlugin` that
/// already implements most of this except for the actual module loading and
/// unloading. It even handles multiple registered types per module.
///
/// # Implements
///
/// [`TypePluginExt`][trait@crate::prelude::TypePluginExt]
#[doc(alias = "GTypePlugin")]
pub struct TypePlugin(Interface<gobject_ffi::GTypePlugin, gobject_ffi::GTypePluginClass>);
match fn {
type_ => || gobject_ffi::g_type_plugin_get_type(),
}
}
impl TypePlugin {
pub const NONE: Option<&'static TypePlugin> = None;
}
mod sealed {
pub trait Sealed {}
impl<T: super::IsA<super::TypePlugin>> Sealed for T {}
}
/// Trait containing all [`struct@TypePlugin`] methods.
///
/// # Implementors
///
/// [`TypeModule`][struct@crate::TypeModule], [`TypePlugin`][struct@crate::TypePlugin]
pub trait TypePluginExt: IsA<TypePlugin> + sealed::Sealed + 'static {
/// Calls the `complete_interface_info` function from the
/// `GTypePluginClass` of `self`. There should be no need to use this
/// function outside of the GObject type system itself.
/// ## `instance_type`
/// the `GType` of an instantiatable type to which the interface
/// is added
/// ## `interface_type`
/// the `GType` of the interface whose info is completed
/// ## `info`
/// the [`InterfaceInfo`][crate::InterfaceInfo] to fill in
#[doc(alias = "g_type_plugin_complete_interface_info")]
fn complete_interface_info(
&self,
instance_type: crate::types::Type,
interface_type: crate::types::Type,
) -> InterfaceInfo {
let info = InterfaceInfo::default();
unsafe {
gobject_ffi::g_type_plugin_complete_interface_info(
self.as_ref().to_glib_none().0,
instance_type.into_glib(),
interface_type.into_glib(),
info.as_ptr(),
);
}
info
}
/// Calls the `complete_type_info` function from the `GTypePluginClass` of `self`.
/// There should be no need to use this function outside of the GObject
/// type system itself.
/// ## `g_type`
/// the `GType` whose info is completed
/// ## `info`
/// the [`TypeInfo`][crate::TypeInfo] struct to fill in
/// ## `value_table`
/// the [`TypeValueTable`][crate::TypeValueTable] to fill in
#[doc(alias = "g_type_plugin_complete_type_info")]
fn complete_type_info(&self, g_type: crate::types::Type) -> (TypeInfo, TypeValueTable) {
let info = TypeInfo::default();
let value_table = TypeValueTable::default();
unsafe {
gobject_ffi::g_type_plugin_complete_type_info(
self.as_ref().to_glib_none().0,
g_type.into_glib(),
info.as_ptr(),
value_table.as_ptr(),
);
}
(info, value_table)
}
/// Calls the `unuse_plugin` function from the `GTypePluginClass` of
/// `self`. There should be no need to use this function outside of
/// the GObject type system itself.
#[doc(alias = "g_type_plugin_unuse")]
fn unuse(&self) {
unsafe {
gobject_ffi::g_type_plugin_unuse(self.as_ref().to_glib_none().0);
}
}
/// Calls the `use_plugin` function from the `GTypePluginClass` of
/// `self`. There should be no need to use this function outside of
/// the GObject type system itself.
#[doc(alias = "g_type_plugin_use")]
#[doc(alias = "use")]
fn use_(&self) {
unsafe {
gobject_ffi::g_type_plugin_use(self.as_ref().to_glib_none().0);
}
}
}
impl<O: IsA<TypePlugin>> TypePluginExt for O {}