graphene/auto/
matrix.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
// This file was generated by gir (https://github.com/gtk-rs/gir)
// from gir-files (https://github.com/gtk-rs/gir-files)
// DO NOT EDIT

use crate::{ffi, Box, Euler, Point, Point3D, Quad, Quaternion, Ray, Rect, Sphere, Vec3, Vec4};
use glib::translate::*;

glib::wrapper! {
    /// A structure capable of holding a 4x4 matrix.
    ///
    /// The contents of the [`Matrix`][crate::Matrix] structure are private and
    /// should never be accessed directly.
    pub struct Matrix(BoxedInline<ffi::graphene_matrix_t>);

    match fn {
        copy => |ptr| glib::gobject_ffi::g_boxed_copy(ffi::graphene_matrix_get_type(), ptr as *mut _) as *mut ffi::graphene_matrix_t,
        free => |ptr| glib::gobject_ffi::g_boxed_free(ffi::graphene_matrix_get_type(), ptr as *mut _),
        type_ => || ffi::graphene_matrix_get_type(),
    }
}

impl Matrix {
    /// Decomposes a transformation matrix into its component transformations.
    ///
    /// The algorithm for decomposing a matrix is taken from the
    /// [CSS3 Transforms specification](http://dev.w3.org/csswg/css-transforms/);
    /// specifically, the decomposition code is based on the equivalent code
    /// published in "Graphics Gems II", edited by Jim Arvo, and
    /// [available online](http://web.archive.org/web/20150512160205/http://tog.acm.org/resources/GraphicsGems/gemsii/unmatrix.c).
    ///
    /// # Returns
    ///
    /// `true` if the matrix could be decomposed
    ///
    /// ## `translate`
    /// the translation vector
    ///
    /// ## `scale`
    /// the scale vector
    ///
    /// ## `rotate`
    /// the rotation quaternion
    ///
    /// ## `shear`
    /// the shear vector
    ///
    /// ## `perspective`
    /// the perspective vector
    #[doc(alias = "graphene_matrix_decompose")]
    pub fn decompose(&self) -> Option<(Vec3, Vec3, Quaternion, Vec3, Vec4)> {
        unsafe {
            let mut translate = Vec3::uninitialized();
            let mut scale = Vec3::uninitialized();
            let mut rotate = Quaternion::uninitialized();
            let mut shear = Vec3::uninitialized();
            let mut perspective = Vec4::uninitialized();
            let ret = ffi::graphene_matrix_decompose(
                self.to_glib_none().0,
                translate.to_glib_none_mut().0,
                scale.to_glib_none_mut().0,
                rotate.to_glib_none_mut().0,
                shear.to_glib_none_mut().0,
                perspective.to_glib_none_mut().0,
            );
            if ret {
                Some((translate, scale, rotate, shear, perspective))
            } else {
                None
            }
        }
    }

    /// Computes the determinant of the given matrix.
    ///
    /// # Returns
    ///
    /// the value of the determinant
    #[doc(alias = "graphene_matrix_determinant")]
    pub fn determinant(&self) -> f32 {
        unsafe { ffi::graphene_matrix_determinant(self.to_glib_none().0) }
    }

    #[doc(alias = "graphene_matrix_equal")]
    fn equal(&self, b: &Matrix) -> bool {
        unsafe { ffi::graphene_matrix_equal(self.to_glib_none().0, b.to_glib_none().0) }
    }

    /// Checks whether the two given [`Matrix`][crate::Matrix] matrices are
    /// byte-by-byte equal.
    ///
    /// While this function is faster than `graphene_matrix_equal()`, it
    /// can also return false negatives, so it should be used in
    /// conjuction with either `graphene_matrix_equal()` or
    /// [`near()`][Self::near()]. For instance:
    ///
    ///
    ///
    /// **⚠️ The following code is in C ⚠️**
    ///
    /// ```C
    ///   if (graphene_matrix_equal_fast (a, b))
    ///     {
    ///       // matrices are definitely the same
    ///     }
    ///   else
    ///     {
    ///       if (graphene_matrix_equal (a, b))
    ///         // matrices contain the same values within an epsilon of FLT_EPSILON
    ///       else if (graphene_matrix_near (a, b, 0.0001))
    ///         // matrices contain the same values within an epsilon of 0.0001
    ///       else
    ///         // matrices are not equal
    ///     }
    /// ```
    /// ## `b`
    /// a [`Matrix`][crate::Matrix]
    ///
    /// # Returns
    ///
    /// `true` if the matrices are equal. and `false` otherwise
    #[doc(alias = "graphene_matrix_equal_fast")]
    pub fn equal_fast(&self, b: &Matrix) -> bool {
        unsafe { ffi::graphene_matrix_equal_fast(self.to_glib_none().0, b.to_glib_none().0) }
    }

    /// Retrieves the given row vector at `index_` inside a matrix.
    /// ## `index_`
    /// the index of the row vector, between 0 and 3
    ///
    /// # Returns
    ///
    ///
    /// ## `res`
    /// return location for the [`Vec4`][crate::Vec4]
    ///  that is used to store the row vector
    #[doc(alias = "graphene_matrix_get_row")]
    #[doc(alias = "get_row")]
    pub fn row(&self, index_: u32) -> Vec4 {
        unsafe {
            let mut res = Vec4::uninitialized();
            ffi::graphene_matrix_get_row(self.to_glib_none().0, index_, res.to_glib_none_mut().0);
            res
        }
    }

    /// Retrieves the value at the given `row` and `col` index.
    /// ## `row`
    /// the row index
    /// ## `col`
    /// the column index
    ///
    /// # Returns
    ///
    /// the value at the given indices
    #[doc(alias = "graphene_matrix_get_value")]
    #[doc(alias = "get_value")]
    pub fn value(&self, row: u32, col: u32) -> f32 {
        unsafe { ffi::graphene_matrix_get_value(self.to_glib_none().0, row, col) }
    }

    /// Retrieves the scaling factor on the X axis in `self`.
    ///
    /// # Returns
    ///
    /// the value of the scaling factor
    #[doc(alias = "graphene_matrix_get_x_scale")]
    #[doc(alias = "get_x_scale")]
    pub fn x_scale(&self) -> f32 {
        unsafe { ffi::graphene_matrix_get_x_scale(self.to_glib_none().0) }
    }

    /// Retrieves the translation component on the X axis from `self`.
    ///
    /// # Returns
    ///
    /// the translation component
    #[doc(alias = "graphene_matrix_get_x_translation")]
    #[doc(alias = "get_x_translation")]
    pub fn x_translation(&self) -> f32 {
        unsafe { ffi::graphene_matrix_get_x_translation(self.to_glib_none().0) }
    }

    /// Retrieves the scaling factor on the Y axis in `self`.
    ///
    /// # Returns
    ///
    /// the value of the scaling factor
    #[doc(alias = "graphene_matrix_get_y_scale")]
    #[doc(alias = "get_y_scale")]
    pub fn y_scale(&self) -> f32 {
        unsafe { ffi::graphene_matrix_get_y_scale(self.to_glib_none().0) }
    }

    /// Retrieves the translation component on the Y axis from `self`.
    ///
    /// # Returns
    ///
    /// the translation component
    #[doc(alias = "graphene_matrix_get_y_translation")]
    #[doc(alias = "get_y_translation")]
    pub fn y_translation(&self) -> f32 {
        unsafe { ffi::graphene_matrix_get_y_translation(self.to_glib_none().0) }
    }

    /// Retrieves the scaling factor on the Z axis in `self`.
    ///
    /// # Returns
    ///
    /// the value of the scaling factor
    #[doc(alias = "graphene_matrix_get_z_scale")]
    #[doc(alias = "get_z_scale")]
    pub fn z_scale(&self) -> f32 {
        unsafe { ffi::graphene_matrix_get_z_scale(self.to_glib_none().0) }
    }

    /// Retrieves the translation component on the Z axis from `self`.
    ///
    /// # Returns
    ///
    /// the translation component
    #[doc(alias = "graphene_matrix_get_z_translation")]
    #[doc(alias = "get_z_translation")]
    pub fn z_translation(&self) -> f32 {
        unsafe { ffi::graphene_matrix_get_z_translation(self.to_glib_none().0) }
    }

    /// Linearly interpolates the two given [`Matrix`][crate::Matrix] by
    /// interpolating the decomposed transformations separately.
    ///
    /// If either matrix cannot be reduced to their transformations
    /// then the interpolation cannot be performed, and this function
    /// will return an identity matrix.
    /// ## `b`
    /// a [`Matrix`][crate::Matrix]
    /// ## `factor`
    /// the linear interpolation factor
    ///
    /// # Returns
    ///
    ///
    /// ## `res`
    /// return location for the
    ///  interpolated matrix
    #[doc(alias = "graphene_matrix_interpolate")]
    #[must_use]
    pub fn interpolate(&self, b: &Matrix, factor: f64) -> Matrix {
        unsafe {
            let mut res = Matrix::uninitialized();
            ffi::graphene_matrix_interpolate(
                self.to_glib_none().0,
                b.to_glib_none().0,
                factor,
                res.to_glib_none_mut().0,
            );
            res
        }
    }

    /// Inverts the given matrix.
    ///
    /// # Returns
    ///
    /// `true` if the matrix is invertible
    ///
    /// ## `res`
    /// return location for the
    ///  inverse matrix
    #[doc(alias = "graphene_matrix_inverse")]
    pub fn inverse(&self) -> Option<Matrix> {
        unsafe {
            let mut res = Matrix::uninitialized();
            let ret = ffi::graphene_matrix_inverse(self.to_glib_none().0, res.to_glib_none_mut().0);
            if ret {
                Some(res)
            } else {
                None
            }
        }
    }

    /// Checks whether the given [`Matrix`][crate::Matrix] is compatible with an
    /// a 2D affine transformation matrix.
    ///
    /// # Returns
    ///
    /// `true` if the matrix is compatible with an affine
    ///  transformation matrix
    #[doc(alias = "graphene_matrix_is_2d")]
    pub fn is_2d(&self) -> bool {
        unsafe { ffi::graphene_matrix_is_2d(self.to_glib_none().0) }
    }

    /// Checks whether a [`Matrix`][crate::Matrix] has a visible back face.
    ///
    /// # Returns
    ///
    /// `true` if the back face of the matrix is visible
    #[doc(alias = "graphene_matrix_is_backface_visible")]
    pub fn is_backface_visible(&self) -> bool {
        unsafe { ffi::graphene_matrix_is_backface_visible(self.to_glib_none().0) }
    }

    /// Checks whether the given [`Matrix`][crate::Matrix] is the identity matrix.
    ///
    /// # Returns
    ///
    /// `true` if the matrix is the identity matrix
    #[doc(alias = "graphene_matrix_is_identity")]
    pub fn is_identity(&self) -> bool {
        unsafe { ffi::graphene_matrix_is_identity(self.to_glib_none().0) }
    }

    /// Checks whether a matrix is singular.
    ///
    /// # Returns
    ///
    /// `true` if the matrix is singular
    #[doc(alias = "graphene_matrix_is_singular")]
    pub fn is_singular(&self) -> bool {
        unsafe { ffi::graphene_matrix_is_singular(self.to_glib_none().0) }
    }

    /// Multiplies two [`Matrix`][crate::Matrix].
    ///
    /// Matrix multiplication is not commutative in general; the order of the factors matters.
    /// The product of this multiplication is (`self` × `b`)
    /// ## `b`
    /// a [`Matrix`][crate::Matrix]
    ///
    /// # Returns
    ///
    ///
    /// ## `res`
    /// return location for the matrix
    ///  result
    #[doc(alias = "graphene_matrix_multiply")]
    #[must_use]
    pub fn multiply(&self, b: &Matrix) -> Matrix {
        unsafe {
            let mut res = Matrix::uninitialized();
            ffi::graphene_matrix_multiply(
                self.to_glib_none().0,
                b.to_glib_none().0,
                res.to_glib_none_mut().0,
            );
            res
        }
    }

    /// Compares the two given [`Matrix`][crate::Matrix] matrices and checks
    /// whether their values are within the given `epsilon` of each
    /// other.
    /// ## `b`
    /// a [`Matrix`][crate::Matrix]
    /// ## `epsilon`
    /// the threshold between the two matrices
    ///
    /// # Returns
    ///
    /// `true` if the two matrices are near each other, and
    ///  `false` otherwise
    #[doc(alias = "graphene_matrix_near")]
    pub fn near(&self, b: &Matrix, epsilon: f32) -> bool {
        unsafe { ffi::graphene_matrix_near(self.to_glib_none().0, b.to_glib_none().0, epsilon) }
    }

    /// Normalizes the given [`Matrix`][crate::Matrix].
    ///
    /// # Returns
    ///
    ///
    /// ## `res`
    /// return location for the normalized matrix
    #[doc(alias = "graphene_matrix_normalize")]
    #[must_use]
    pub fn normalize(&self) -> Matrix {
        unsafe {
            let mut res = Matrix::uninitialized();
            ffi::graphene_matrix_normalize(self.to_glib_none().0, res.to_glib_none_mut().0);
            res
        }
    }

    /// Applies a perspective of `depth` to the matrix.
    /// ## `depth`
    /// the depth of the perspective
    ///
    /// # Returns
    ///
    ///
    /// ## `res`
    /// return location for the
    ///  perspective matrix
    #[doc(alias = "graphene_matrix_perspective")]
    #[must_use]
    pub fn perspective(&self, depth: f32) -> Matrix {
        unsafe {
            let mut res = Matrix::uninitialized();
            ffi::graphene_matrix_perspective(
                self.to_glib_none().0,
                depth,
                res.to_glib_none_mut().0,
            );
            res
        }
    }

    /// Prints the contents of a matrix to the standard error stream.
    ///
    /// This function is only useful for debugging; there are no guarantees
    /// made on the format of the output.
    #[doc(alias = "graphene_matrix_print")]
    pub fn print(&self) {
        unsafe {
            ffi::graphene_matrix_print(self.to_glib_none().0);
        }
    }

    /// Projects a [`Point`][crate::Point] using the matrix `self`.
    /// ## `p`
    /// a [`Point`][crate::Point]
    ///
    /// # Returns
    ///
    ///
    /// ## `res`
    /// return location for the projected
    ///  point
    #[doc(alias = "graphene_matrix_project_point")]
    pub fn project_point(&self, p: &Point) -> Point {
        unsafe {
            let mut res = Point::uninitialized();
            ffi::graphene_matrix_project_point(
                self.to_glib_none().0,
                p.to_glib_none().0,
                res.to_glib_none_mut().0,
            );
            res
        }
    }

    /// Projects all corners of a [`Rect`][crate::Rect] using the given matrix.
    ///
    /// See also: [`project_point()`][Self::project_point()]
    /// ## `r`
    /// a [`Rect`][crate::Rect]
    ///
    /// # Returns
    ///
    ///
    /// ## `res`
    /// return location for the projected
    ///  rectangle
    #[doc(alias = "graphene_matrix_project_rect")]
    pub fn project_rect(&self, r: &Rect) -> Quad {
        unsafe {
            let mut res = Quad::uninitialized();
            ffi::graphene_matrix_project_rect(
                self.to_glib_none().0,
                r.to_glib_none().0,
                res.to_glib_none_mut().0,
            );
            res
        }
    }

    /// Projects a [`Rect`][crate::Rect] using the given matrix.
    ///
    /// The resulting rectangle is the axis aligned bounding rectangle capable
    /// of fully containing the projected rectangle.
    /// ## `r`
    /// a [`Rect`][crate::Rect]
    ///
    /// # Returns
    ///
    ///
    /// ## `res`
    /// return location for the projected
    ///  rectangle
    #[doc(alias = "graphene_matrix_project_rect_bounds")]
    pub fn project_rect_bounds(&self, r: &Rect) -> Rect {
        unsafe {
            let mut res = Rect::uninitialized();
            ffi::graphene_matrix_project_rect_bounds(
                self.to_glib_none().0,
                r.to_glib_none().0,
                res.to_glib_none_mut().0,
            );
            res
        }
    }

    /// Adds a rotation transformation to `self`, using the given `angle`
    /// and `axis` vector.
    ///
    /// This is the equivalent of calling [`new_rotate()`][Self::new_rotate()] and
    /// then multiplying the matrix `self` with the rotation matrix.
    /// ## `angle`
    /// the rotation angle, in degrees
    /// ## `axis`
    /// the rotation axis, as a [`Vec3`][crate::Vec3]
    #[doc(alias = "graphene_matrix_rotate")]
    pub fn rotate(&mut self, angle: f32, axis: &Vec3) {
        unsafe {
            ffi::graphene_matrix_rotate(self.to_glib_none_mut().0, angle, axis.to_glib_none().0);
        }
    }

    /// Adds a rotation transformation to `self`, using the given
    /// [`Euler`][crate::Euler].
    /// ## `e`
    /// a rotation described by a [`Euler`][crate::Euler]
    #[doc(alias = "graphene_matrix_rotate_euler")]
    pub fn rotate_euler(&mut self, e: &Euler) {
        unsafe {
            ffi::graphene_matrix_rotate_euler(self.to_glib_none_mut().0, e.to_glib_none().0);
        }
    }

    /// Adds a rotation transformation to `self`, using the given
    /// [`Quaternion`][crate::Quaternion].
    ///
    /// This is the equivalent of calling [`Quaternion::to_matrix()`][crate::Quaternion::to_matrix()] and
    /// then multiplying `self` with the rotation matrix.
    /// ## `q`
    /// a rotation described by a [`Quaternion`][crate::Quaternion]
    #[doc(alias = "graphene_matrix_rotate_quaternion")]
    pub fn rotate_quaternion(&mut self, q: &Quaternion) {
        unsafe {
            ffi::graphene_matrix_rotate_quaternion(self.to_glib_none_mut().0, q.to_glib_none().0);
        }
    }

    /// Adds a rotation transformation around the X axis to `self`, using
    /// the given `angle`.
    ///
    /// See also: [`rotate()`][Self::rotate()]
    /// ## `angle`
    /// the rotation angle, in degrees
    #[doc(alias = "graphene_matrix_rotate_x")]
    pub fn rotate_x(&mut self, angle: f32) {
        unsafe {
            ffi::graphene_matrix_rotate_x(self.to_glib_none_mut().0, angle);
        }
    }

    /// Adds a rotation transformation around the Y axis to `self`, using
    /// the given `angle`.
    ///
    /// See also: [`rotate()`][Self::rotate()]
    /// ## `angle`
    /// the rotation angle, in degrees
    #[doc(alias = "graphene_matrix_rotate_y")]
    pub fn rotate_y(&mut self, angle: f32) {
        unsafe {
            ffi::graphene_matrix_rotate_y(self.to_glib_none_mut().0, angle);
        }
    }

    /// Adds a rotation transformation around the Z axis to `self`, using
    /// the given `angle`.
    ///
    /// See also: [`rotate()`][Self::rotate()]
    /// ## `angle`
    /// the rotation angle, in degrees
    #[doc(alias = "graphene_matrix_rotate_z")]
    pub fn rotate_z(&mut self, angle: f32) {
        unsafe {
            ffi::graphene_matrix_rotate_z(self.to_glib_none_mut().0, angle);
        }
    }

    /// Adds a scaling transformation to `self`, using the three
    /// given factors.
    ///
    /// This is the equivalent of calling [`new_scale()`][Self::new_scale()] and then
    /// multiplying the matrix `self` with the scale matrix.
    /// ## `factor_x`
    /// scaling factor on the X axis
    /// ## `factor_y`
    /// scaling factor on the Y axis
    /// ## `factor_z`
    /// scaling factor on the Z axis
    #[doc(alias = "graphene_matrix_scale")]
    pub fn scale(&mut self, factor_x: f32, factor_y: f32, factor_z: f32) {
        unsafe {
            ffi::graphene_matrix_scale(self.to_glib_none_mut().0, factor_x, factor_y, factor_z);
        }
    }

    /// Adds a skew of `factor` on the X and Y axis to the given matrix.
    /// ## `factor`
    /// skew factor
    #[doc(alias = "graphene_matrix_skew_xy")]
    pub fn skew_xy(&mut self, factor: f32) {
        unsafe {
            ffi::graphene_matrix_skew_xy(self.to_glib_none_mut().0, factor);
        }
    }

    /// Adds a skew of `factor` on the X and Z axis to the given matrix.
    /// ## `factor`
    /// skew factor
    #[doc(alias = "graphene_matrix_skew_xz")]
    pub fn skew_xz(&mut self, factor: f32) {
        unsafe {
            ffi::graphene_matrix_skew_xz(self.to_glib_none_mut().0, factor);
        }
    }

    /// Adds a skew of `factor` on the Y and Z axis to the given matrix.
    /// ## `factor`
    /// skew factor
    #[doc(alias = "graphene_matrix_skew_yz")]
    pub fn skew_yz(&mut self, factor: f32) {
        unsafe {
            ffi::graphene_matrix_skew_yz(self.to_glib_none_mut().0, factor);
        }
    }

    /// Converts a [`Matrix`][crate::Matrix] to an affine transformation
    /// matrix, if the given matrix is compatible.
    ///
    /// The returned values have the following layout:
    ///
    ///
    ///
    /// **⚠️ The following code is in plain ⚠️**
    ///
    /// ```plain
    ///   ⎛ xx  yx ⎞   ⎛  a   b  0 ⎞
    ///   ⎜ xy  yy ⎟ = ⎜  c   d  0 ⎟
    ///   ⎝ x0  y0 ⎠   ⎝ tx  ty  1 ⎠
    /// ```
    ///
    /// This function can be used to convert between a [`Matrix`][crate::Matrix]
    /// and an affine matrix type from other libraries.
    ///
    /// # Returns
    ///
    /// `true` if the matrix is compatible with an affine
    ///  transformation matrix
    ///
    /// ## `xx`
    /// return location for the xx member
    ///
    /// ## `yx`
    /// return location for the yx member
    ///
    /// ## `xy`
    /// return location for the xy member
    ///
    /// ## `yy`
    /// return location for the yy member
    ///
    /// ## `x_0`
    /// return location for the x0 member
    ///
    /// ## `y_0`
    /// return location for the y0 member
    #[doc(alias = "graphene_matrix_to_2d")]
    pub fn to_2d(&self) -> Option<(f64, f64, f64, f64, f64, f64)> {
        unsafe {
            let mut xx = std::mem::MaybeUninit::uninit();
            let mut yx = std::mem::MaybeUninit::uninit();
            let mut xy = std::mem::MaybeUninit::uninit();
            let mut yy = std::mem::MaybeUninit::uninit();
            let mut x_0 = std::mem::MaybeUninit::uninit();
            let mut y_0 = std::mem::MaybeUninit::uninit();
            let ret = ffi::graphene_matrix_to_2d(
                self.to_glib_none().0,
                xx.as_mut_ptr(),
                yx.as_mut_ptr(),
                xy.as_mut_ptr(),
                yy.as_mut_ptr(),
                x_0.as_mut_ptr(),
                y_0.as_mut_ptr(),
            );
            if ret {
                Some((
                    xx.assume_init(),
                    yx.assume_init(),
                    xy.assume_init(),
                    yy.assume_init(),
                    x_0.assume_init(),
                    y_0.assume_init(),
                ))
            } else {
                None
            }
        }
    }

    /// Transforms each corner of a [`Rect`][crate::Rect] using the given matrix `self`.
    ///
    /// The result is the axis aligned bounding rectangle containing the coplanar
    /// quadrilateral.
    ///
    /// See also: [`transform_point()`][Self::transform_point()]
    /// ## `r`
    /// a [`Rect`][crate::Rect]
    ///
    /// # Returns
    ///
    ///
    /// ## `res`
    /// return location for the bounds
    ///  of the transformed rectangle
    #[doc(alias = "graphene_matrix_transform_bounds")]
    pub fn transform_bounds(&self, r: &Rect) -> Rect {
        unsafe {
            let mut res = Rect::uninitialized();
            ffi::graphene_matrix_transform_bounds(
                self.to_glib_none().0,
                r.to_glib_none().0,
                res.to_glib_none_mut().0,
            );
            res
        }
    }

    /// Transforms the vertices of a [`Box`][crate::Box] using the given matrix `self`.
    ///
    /// The result is the axis aligned bounding box containing the transformed
    /// vertices.
    /// ## `b`
    /// a [`Box`][crate::Box]
    ///
    /// # Returns
    ///
    ///
    /// ## `res`
    /// return location for the bounds
    ///  of the transformed box
    #[doc(alias = "graphene_matrix_transform_box")]
    pub fn transform_box(&self, b: &Box) -> Box {
        unsafe {
            let mut res = Box::uninitialized();
            ffi::graphene_matrix_transform_box(
                self.to_glib_none().0,
                b.to_glib_none().0,
                res.to_glib_none_mut().0,
            );
            res
        }
    }

    /// Transforms the given [`Point`][crate::Point] using the matrix `self`.
    ///
    /// Unlike [`transform_vec3()`][Self::transform_vec3()], this function will take into
    /// account the fourth row vector of the [`Matrix`][crate::Matrix] when computing
    /// the dot product of each row vector of the matrix.
    ///
    /// See also: `graphene_simd4x4f_point3_mul()`
    /// ## `p`
    /// a [`Point`][crate::Point]
    ///
    /// # Returns
    ///
    ///
    /// ## `res`
    /// return location for the
    ///  transformed [`Point`][crate::Point]
    #[doc(alias = "graphene_matrix_transform_point")]
    pub fn transform_point(&self, p: &Point) -> Point {
        unsafe {
            let mut res = Point::uninitialized();
            ffi::graphene_matrix_transform_point(
                self.to_glib_none().0,
                p.to_glib_none().0,
                res.to_glib_none_mut().0,
            );
            res
        }
    }

    /// Transforms the given [`Point3D`][crate::Point3D] using the matrix `self`.
    ///
    /// Unlike [`transform_vec3()`][Self::transform_vec3()], this function will take into
    /// account the fourth row vector of the [`Matrix`][crate::Matrix] when computing
    /// the dot product of each row vector of the matrix.
    ///
    /// See also: `graphene_simd4x4f_point3_mul()`
    /// ## `p`
    /// a [`Point3D`][crate::Point3D]
    ///
    /// # Returns
    ///
    ///
    /// ## `res`
    /// return location for the result
    #[doc(alias = "graphene_matrix_transform_point3d")]
    pub fn transform_point3d(&self, p: &Point3D) -> Point3D {
        unsafe {
            let mut res = Point3D::uninitialized();
            ffi::graphene_matrix_transform_point3d(
                self.to_glib_none().0,
                p.to_glib_none().0,
                res.to_glib_none_mut().0,
            );
            res
        }
    }

    /// Transform a [`Ray`][crate::Ray] using the given matrix `self`.
    /// ## `r`
    /// a [`Ray`][crate::Ray]
    ///
    /// # Returns
    ///
    ///
    /// ## `res`
    /// return location for the
    ///  transformed ray
    #[doc(alias = "graphene_matrix_transform_ray")]
    pub fn transform_ray(&self, r: &Ray) -> Ray {
        unsafe {
            let mut res = Ray::uninitialized();
            ffi::graphene_matrix_transform_ray(
                self.to_glib_none().0,
                r.to_glib_none().0,
                res.to_glib_none_mut().0,
            );
            res
        }
    }

    /// Transforms each corner of a [`Rect`][crate::Rect] using the given matrix `self`.
    ///
    /// The result is a coplanar quadrilateral.
    ///
    /// See also: [`transform_point()`][Self::transform_point()]
    /// ## `r`
    /// a [`Rect`][crate::Rect]
    ///
    /// # Returns
    ///
    ///
    /// ## `res`
    /// return location for the
    ///  transformed quad
    #[doc(alias = "graphene_matrix_transform_rect")]
    pub fn transform_rect(&self, r: &Rect) -> Quad {
        unsafe {
            let mut res = Quad::uninitialized();
            ffi::graphene_matrix_transform_rect(
                self.to_glib_none().0,
                r.to_glib_none().0,
                res.to_glib_none_mut().0,
            );
            res
        }
    }

    /// Transforms a [`Sphere`][crate::Sphere] using the given matrix `self`. The
    /// result is the bounding sphere containing the transformed sphere.
    /// ## `s`
    /// a [`Sphere`][crate::Sphere]
    ///
    /// # Returns
    ///
    ///
    /// ## `res`
    /// return location for the bounds
    ///  of the transformed sphere
    #[doc(alias = "graphene_matrix_transform_sphere")]
    pub fn transform_sphere(&self, s: &Sphere) -> Sphere {
        unsafe {
            let mut res = Sphere::uninitialized();
            ffi::graphene_matrix_transform_sphere(
                self.to_glib_none().0,
                s.to_glib_none().0,
                res.to_glib_none_mut().0,
            );
            res
        }
    }

    /// Transforms the given [`Vec3`][crate::Vec3] using the matrix `self`.
    ///
    /// This function will multiply the X, Y, and Z row vectors of the matrix `self`
    /// with the corresponding components of the vector `v`. The W row vector will
    /// be ignored.
    ///
    /// See also: `graphene_simd4x4f_vec3_mul()`
    /// ## `v`
    /// a [`Vec3`][crate::Vec3]
    ///
    /// # Returns
    ///
    ///
    /// ## `res`
    /// return location for a [`Vec3`][crate::Vec3]
    #[doc(alias = "graphene_matrix_transform_vec3")]
    pub fn transform_vec3(&self, v: &Vec3) -> Vec3 {
        unsafe {
            let mut res = Vec3::uninitialized();
            ffi::graphene_matrix_transform_vec3(
                self.to_glib_none().0,
                v.to_glib_none().0,
                res.to_glib_none_mut().0,
            );
            res
        }
    }

    /// Transforms the given [`Vec4`][crate::Vec4] using the matrix `self`.
    ///
    /// See also: `graphene_simd4x4f_vec4_mul()`
    /// ## `v`
    /// a [`Vec4`][crate::Vec4]
    ///
    /// # Returns
    ///
    ///
    /// ## `res`
    /// return location for a [`Vec4`][crate::Vec4]
    #[doc(alias = "graphene_matrix_transform_vec4")]
    pub fn transform_vec4(&self, v: &Vec4) -> Vec4 {
        unsafe {
            let mut res = Vec4::uninitialized();
            ffi::graphene_matrix_transform_vec4(
                self.to_glib_none().0,
                v.to_glib_none().0,
                res.to_glib_none_mut().0,
            );
            res
        }
    }

    /// Adds a translation transformation to `self` using the coordinates
    /// of the given [`Point3D`][crate::Point3D].
    ///
    /// This is the equivalent of calling [`new_translate()`][Self::new_translate()] and
    /// then multiplying `self` with the translation matrix.
    /// ## `pos`
    /// a [`Point3D`][crate::Point3D]
    #[doc(alias = "graphene_matrix_translate")]
    pub fn translate(&mut self, pos: &Point3D) {
        unsafe {
            ffi::graphene_matrix_translate(self.to_glib_none_mut().0, pos.to_glib_none().0);
        }
    }

    /// Transposes the given matrix.
    ///
    /// # Returns
    ///
    ///
    /// ## `res`
    /// return location for the
    ///  transposed matrix
    #[doc(alias = "graphene_matrix_transpose")]
    #[must_use]
    pub fn transpose(&self) -> Matrix {
        unsafe {
            let mut res = Matrix::uninitialized();
            ffi::graphene_matrix_transpose(self.to_glib_none().0, res.to_glib_none_mut().0);
            res
        }
    }

    /// Unprojects the given `point` using the `self` matrix and
    /// a `modelview` matrix.
    /// ## `modelview`
    /// a [`Matrix`][crate::Matrix] for the modelview matrix; this is
    ///  the inverse of the modelview used when projecting the point
    /// ## `point`
    /// a [`Point3D`][crate::Point3D] with the coordinates of the point
    ///
    /// # Returns
    ///
    ///
    /// ## `res`
    /// return location for the unprojected
    ///  point
    #[doc(alias = "graphene_matrix_unproject_point3d")]
    pub fn unproject_point3d(&self, modelview: &Matrix, point: &Point3D) -> Point3D {
        unsafe {
            let mut res = Point3D::uninitialized();
            ffi::graphene_matrix_unproject_point3d(
                self.to_glib_none().0,
                modelview.to_glib_none().0,
                point.to_glib_none().0,
                res.to_glib_none_mut().0,
            );
            res
        }
    }

    /// Undoes the transformation on the corners of a [`Rect`][crate::Rect] using the
    /// given matrix, within the given axis aligned rectangular `bounds`.
    /// ## `r`
    /// a [`Rect`][crate::Rect]
    /// ## `bounds`
    /// the bounds of the transformation
    ///
    /// # Returns
    ///
    ///
    /// ## `res`
    /// return location for the
    ///  untransformed rectangle
    #[doc(alias = "graphene_matrix_untransform_bounds")]
    pub fn untransform_bounds(&self, r: &Rect, bounds: &Rect) -> Rect {
        unsafe {
            let mut res = Rect::uninitialized();
            ffi::graphene_matrix_untransform_bounds(
                self.to_glib_none().0,
                r.to_glib_none().0,
                bounds.to_glib_none().0,
                res.to_glib_none_mut().0,
            );
            res
        }
    }

    /// Undoes the transformation of a [`Point`][crate::Point] using the
    /// given matrix, within the given axis aligned rectangular `bounds`.
    /// ## `p`
    /// a [`Point`][crate::Point]
    /// ## `bounds`
    /// the bounds of the transformation
    ///
    /// # Returns
    ///
    /// `true` if the point was successfully untransformed
    ///
    /// ## `res`
    /// return location for the
    ///  untransformed point
    #[doc(alias = "graphene_matrix_untransform_point")]
    pub fn untransform_point(&self, p: &Point, bounds: &Rect) -> Option<Point> {
        unsafe {
            let mut res = Point::uninitialized();
            let ret = ffi::graphene_matrix_untransform_point(
                self.to_glib_none().0,
                p.to_glib_none().0,
                bounds.to_glib_none().0,
                res.to_glib_none_mut().0,
            );
            if ret {
                Some(res)
            } else {
                None
            }
        }
    }
}

impl PartialEq for Matrix {
    #[inline]
    fn eq(&self, other: &Self) -> bool {
        self.equal(other)
    }
}

impl Eq for Matrix {}