graphene/auto/rect.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
// This file was generated by gir (https://github.com/gtk-rs/gir)
// from gir-files (https://github.com/gtk-rs/gir-files)
// DO NOT EDIT
use crate::{ffi, Point};
use glib::translate::*;
glib::wrapper! {
/// The location and size of a rectangle region.
///
/// The width and height of a [`Rect`][crate::Rect] can be negative; for instance,
/// a [`Rect`][crate::Rect] with an origin of [ 0, 0 ] and a size of [ 10, 10 ] is
/// equivalent to a [`Rect`][crate::Rect] with an origin of [ 10, 10 ] and a size
/// of [ -10, -10 ].
///
/// Application code can normalize rectangles using [`normalize()`][Self::normalize()];
/// this function will ensure that the width and height of a rectangle are
/// positive values. All functions taking a [`Rect`][crate::Rect] as an argument
/// will internally operate on a normalized copy; all functions returning a
/// [`Rect`][crate::Rect] will always return a normalized rectangle.
pub struct Rect(BoxedInline<ffi::graphene_rect_t>);
match fn {
copy => |ptr| glib::gobject_ffi::g_boxed_copy(ffi::graphene_rect_get_type(), ptr as *mut _) as *mut ffi::graphene_rect_t,
free => |ptr| glib::gobject_ffi::g_boxed_free(ffi::graphene_rect_get_type(), ptr as *mut _),
type_ => || ffi::graphene_rect_get_type(),
}
}
impl Rect {
/// Checks whether a [`Rect`][crate::Rect] contains the given coordinates.
/// ## `p`
/// a [`Point`][crate::Point]
///
/// # Returns
///
/// `true` if the rectangle contains the point
#[doc(alias = "graphene_rect_contains_point")]
pub fn contains_point(&self, p: &Point) -> bool {
unsafe { ffi::graphene_rect_contains_point(self.to_glib_none().0, p.to_glib_none().0) }
}
/// Checks whether a [`Rect`][crate::Rect] fully contains the given
/// rectangle.
/// ## `b`
/// a [`Rect`][crate::Rect]
///
/// # Returns
///
/// `true` if the rectangle `self` fully contains `b`
#[doc(alias = "graphene_rect_contains_rect")]
pub fn contains_rect(&self, b: &Rect) -> bool {
unsafe { ffi::graphene_rect_contains_rect(self.to_glib_none().0, b.to_glib_none().0) }
}
#[doc(alias = "graphene_rect_equal")]
fn equal(&self, b: &Rect) -> bool {
unsafe { ffi::graphene_rect_equal(self.to_glib_none().0, b.to_glib_none().0) }
}
/// Expands a [`Rect`][crate::Rect] to contain the given [`Point`][crate::Point].
/// ## `p`
/// a [`Point`][crate::Point]
///
/// # Returns
///
///
/// ## `res`
/// return location for the expanded rectangle
#[doc(alias = "graphene_rect_expand")]
#[must_use]
pub fn expand(&self, p: &Point) -> Rect {
unsafe {
let mut res = Rect::uninitialized();
ffi::graphene_rect_expand(
self.to_glib_none().0,
p.to_glib_none().0,
res.to_glib_none_mut().0,
);
res
}
}
/// Compute the area of given normalized rectangle.
///
/// # Returns
///
/// the area of the normalized rectangle
#[doc(alias = "graphene_rect_get_area")]
#[doc(alias = "get_area")]
pub fn area(&self) -> f32 {
unsafe { ffi::graphene_rect_get_area(self.to_glib_none().0) }
}
/// Retrieves the coordinates of the bottom-left corner of the given rectangle.
///
/// # Returns
///
///
/// ## `p`
/// return location for a [`Point`][crate::Point]
#[doc(alias = "graphene_rect_get_bottom_left")]
#[doc(alias = "get_bottom_left")]
pub fn bottom_left(&self) -> Point {
unsafe {
let mut p = Point::uninitialized();
ffi::graphene_rect_get_bottom_left(self.to_glib_none().0, p.to_glib_none_mut().0);
p
}
}
/// Retrieves the coordinates of the bottom-right corner of the given rectangle.
///
/// # Returns
///
///
/// ## `p`
/// return location for a [`Point`][crate::Point]
#[doc(alias = "graphene_rect_get_bottom_right")]
#[doc(alias = "get_bottom_right")]
pub fn bottom_right(&self) -> Point {
unsafe {
let mut p = Point::uninitialized();
ffi::graphene_rect_get_bottom_right(self.to_glib_none().0, p.to_glib_none_mut().0);
p
}
}
/// Retrieves the coordinates of the center of the given rectangle.
///
/// # Returns
///
///
/// ## `p`
/// return location for a [`Point`][crate::Point]
#[doc(alias = "graphene_rect_get_center")]
#[doc(alias = "get_center")]
pub fn center(&self) -> Point {
unsafe {
let mut p = Point::uninitialized();
ffi::graphene_rect_get_center(self.to_glib_none().0, p.to_glib_none_mut().0);
p
}
}
/// Retrieves the normalized height of the given rectangle.
///
/// # Returns
///
/// the normalized height of the rectangle
#[doc(alias = "graphene_rect_get_height")]
#[doc(alias = "get_height")]
pub fn height(&self) -> f32 {
unsafe { ffi::graphene_rect_get_height(self.to_glib_none().0) }
}
/// Retrieves the coordinates of the top-left corner of the given rectangle.
///
/// # Returns
///
///
/// ## `p`
/// return location for a [`Point`][crate::Point]
#[doc(alias = "graphene_rect_get_top_left")]
#[doc(alias = "get_top_left")]
pub fn top_left(&self) -> Point {
unsafe {
let mut p = Point::uninitialized();
ffi::graphene_rect_get_top_left(self.to_glib_none().0, p.to_glib_none_mut().0);
p
}
}
/// Retrieves the coordinates of the top-right corner of the given rectangle.
///
/// # Returns
///
///
/// ## `p`
/// return location for a [`Point`][crate::Point]
#[doc(alias = "graphene_rect_get_top_right")]
#[doc(alias = "get_top_right")]
pub fn top_right(&self) -> Point {
unsafe {
let mut p = Point::uninitialized();
ffi::graphene_rect_get_top_right(self.to_glib_none().0, p.to_glib_none_mut().0);
p
}
}
/// Retrieves the normalized width of the given rectangle.
///
/// # Returns
///
/// the normalized width of the rectangle
#[doc(alias = "graphene_rect_get_width")]
#[doc(alias = "get_width")]
pub fn width(&self) -> f32 {
unsafe { ffi::graphene_rect_get_width(self.to_glib_none().0) }
}
/// Retrieves the normalized X coordinate of the origin of the given
/// rectangle.
///
/// # Returns
///
/// the normalized X coordinate of the rectangle
#[doc(alias = "graphene_rect_get_x")]
#[doc(alias = "get_x")]
pub fn x(&self) -> f32 {
unsafe { ffi::graphene_rect_get_x(self.to_glib_none().0) }
}
/// Retrieves the normalized Y coordinate of the origin of the given
/// rectangle.
///
/// # Returns
///
/// the normalized Y coordinate of the rectangle
#[doc(alias = "graphene_rect_get_y")]
#[doc(alias = "get_y")]
pub fn y(&self) -> f32 {
unsafe { ffi::graphene_rect_get_y(self.to_glib_none().0) }
}
/// Changes the given rectangle to be smaller, or larger depending on the
/// given inset parameters.
///
/// To create an inset rectangle, use positive `d_x` or `d_y` values; to
/// create a larger, encompassing rectangle, use negative `d_x` or `d_y`
/// values.
///
/// The origin of the rectangle is offset by `d_x` and `d_y`, while the size
/// is adjusted by `(2 * `d_x`, 2 * `d_y`)`. If `d_x` and `d_y` are positive
/// values, the size of the rectangle is decreased; if `d_x` and `d_y` are
/// negative values, the size of the rectangle is increased.
///
/// If the size of the resulting inset rectangle has a negative width or
/// height then the size will be set to zero.
/// ## `d_x`
/// the horizontal inset
/// ## `d_y`
/// the vertical inset
///
/// # Returns
///
/// the inset rectangle
#[doc(alias = "graphene_rect_inset")]
pub fn inset(&mut self, d_x: f32, d_y: f32) {
unsafe {
ffi::graphene_rect_inset(self.to_glib_none_mut().0, d_x, d_y);
}
}
/// Changes the given rectangle to be smaller, or larger depending on the
/// given inset parameters.
///
/// To create an inset rectangle, use positive `d_x` or `d_y` values; to
/// create a larger, encompassing rectangle, use negative `d_x` or `d_y`
/// values.
///
/// The origin of the rectangle is offset by `d_x` and `d_y`, while the size
/// is adjusted by `(2 * `d_x`, 2 * `d_y`)`. If `d_x` and `d_y` are positive
/// values, the size of the rectangle is decreased; if `d_x` and `d_y` are
/// negative values, the size of the rectangle is increased.
///
/// If the size of the resulting inset rectangle has a negative width or
/// height then the size will be set to zero.
/// ## `d_x`
/// the horizontal inset
/// ## `d_y`
/// the vertical inset
///
/// # Returns
///
///
/// ## `res`
/// return location for the inset rectangle
#[doc(alias = "graphene_rect_inset_r")]
#[must_use]
pub fn inset_r(&self, d_x: f32, d_y: f32) -> Rect {
unsafe {
let mut res = Rect::uninitialized();
ffi::graphene_rect_inset_r(self.to_glib_none().0, d_x, d_y, res.to_glib_none_mut().0);
res
}
}
/// Linearly interpolates the origin and size of the two given
/// rectangles.
/// ## `b`
/// a [`Rect`][crate::Rect]
/// ## `factor`
/// the linear interpolation factor
///
/// # Returns
///
///
/// ## `res`
/// return location for the
/// interpolated rectangle
#[doc(alias = "graphene_rect_interpolate")]
#[must_use]
pub fn interpolate(&self, b: &Rect, factor: f64) -> Rect {
unsafe {
let mut res = Rect::uninitialized();
ffi::graphene_rect_interpolate(
self.to_glib_none().0,
b.to_glib_none().0,
factor,
res.to_glib_none_mut().0,
);
res
}
}
/// Computes the intersection of the two given rectangles.
///
/// ![](rectangle-intersection.png)
///
/// The intersection in the image above is the blue outline.
///
/// If the two rectangles do not intersect, `res` will contain
/// a degenerate rectangle with origin in (0, 0) and a size of 0.
/// ## `b`
/// a [`Rect`][crate::Rect]
///
/// # Returns
///
/// `true` if the two rectangles intersect
///
/// ## `res`
/// return location for
/// a [`Rect`][crate::Rect]
#[doc(alias = "graphene_rect_intersection")]
pub fn intersection(&self, b: &Rect) -> Option<Rect> {
unsafe {
let mut res = Rect::uninitialized();
let ret = ffi::graphene_rect_intersection(
self.to_glib_none().0,
b.to_glib_none().0,
res.to_glib_none_mut().0,
);
if ret {
Some(res)
} else {
None
}
}
}
/// Normalizes the passed rectangle.
///
/// This function ensures that the size of the rectangle is made of
/// positive values, and that the origin is the top-left corner of
/// the rectangle.
///
/// # Returns
///
/// the normalized rectangle
#[doc(alias = "graphene_rect_normalize")]
pub fn normalize(&mut self) {
unsafe {
ffi::graphene_rect_normalize(self.to_glib_none_mut().0);
}
}
/// Normalizes the passed rectangle.
///
/// This function ensures that the size of the rectangle is made of
/// positive values, and that the origin is in the top-left corner
/// of the rectangle.
///
/// # Returns
///
///
/// ## `res`
/// the return location for the
/// normalized rectangle
#[doc(alias = "graphene_rect_normalize_r")]
#[must_use]
pub fn normalize_r(&self) -> Rect {
unsafe {
let mut res = Rect::uninitialized();
ffi::graphene_rect_normalize_r(self.to_glib_none().0, res.to_glib_none_mut().0);
res
}
}
/// Offsets the origin by `d_x` and `d_y`.
///
/// The size of the rectangle is unchanged.
/// ## `d_x`
/// the horizontal offset
/// ## `d_y`
/// the vertical offset
///
/// # Returns
///
/// the offset rectangle
#[doc(alias = "graphene_rect_offset")]
pub fn offset(&mut self, d_x: f32, d_y: f32) {
unsafe {
ffi::graphene_rect_offset(self.to_glib_none_mut().0, d_x, d_y);
}
}
/// Offsets the origin of the given rectangle by `d_x` and `d_y`.
///
/// The size of the rectangle is left unchanged.
/// ## `d_x`
/// the horizontal offset
/// ## `d_y`
/// the vertical offset
///
/// # Returns
///
///
/// ## `res`
/// return location for the offset
/// rectangle
#[doc(alias = "graphene_rect_offset_r")]
#[must_use]
pub fn offset_r(&self, d_x: f32, d_y: f32) -> Rect {
unsafe {
let mut res = Rect::uninitialized();
ffi::graphene_rect_offset_r(self.to_glib_none().0, d_x, d_y, res.to_glib_none_mut().0);
res
}
}
/// Rounds the origin of the given rectangle to its nearest
/// integer value and and recompute the size so that the
/// rectangle is large enough to contain all the conrners
/// of the original rectangle.
///
/// This function is the equivalent of calling `floor` on
/// the coordinates of the origin, and recomputing the size
/// calling `ceil` on the bottom-right coordinates.
///
/// If you want to be sure that the rounded rectangle
/// completely covers the area that was covered by the
/// original rectangle — i.e. you want to cover the area
/// including all its corners — this function will make sure
/// that the size is recomputed taking into account the ceiling
/// of the coordinates of the bottom-right corner.
/// If the difference between the original coordinates and the
/// coordinates of the rounded rectangle is greater than the
/// difference between the original size and and the rounded
/// size, then the move of the origin would not be compensated
/// by a move in the anti-origin, leaving the corners of the
/// original rectangle outside the rounded one.
///
/// # Returns
///
///
/// ## `res`
/// return location for the
/// rectangle with rounded extents
#[doc(alias = "graphene_rect_round_extents")]
#[must_use]
pub fn round_extents(&self) -> Rect {
unsafe {
let mut res = Rect::uninitialized();
ffi::graphene_rect_round_extents(self.to_glib_none().0, res.to_glib_none_mut().0);
res
}
}
/// Scales the size and origin of a rectangle horizontaly by `s_h`,
/// and vertically by `s_v`. The result `res` is normalized.
/// ## `s_h`
/// horizontal scale factor
/// ## `s_v`
/// vertical scale factor
///
/// # Returns
///
///
/// ## `res`
/// return location for the
/// scaled rectangle
#[doc(alias = "graphene_rect_scale")]
#[must_use]
pub fn scale(&self, s_h: f32, s_v: f32) -> Rect {
unsafe {
let mut res = Rect::uninitialized();
ffi::graphene_rect_scale(self.to_glib_none().0, s_h, s_v, res.to_glib_none_mut().0);
res
}
}
/// Computes the union of the two given rectangles.
///
/// ![](rectangle-union.png)
///
/// The union in the image above is the blue outline.
/// ## `b`
/// a [`Rect`][crate::Rect]
///
/// # Returns
///
///
/// ## `res`
/// return location for a [`Rect`][crate::Rect]
#[doc(alias = "graphene_rect_union")]
#[must_use]
pub fn union(&self, b: &Rect) -> Rect {
unsafe {
let mut res = Rect::uninitialized();
ffi::graphene_rect_union(
self.to_glib_none().0,
b.to_glib_none().0,
res.to_glib_none_mut().0,
);
res
}
}
/// Returns a degenerate rectangle with origin fixed at (0, 0) and
/// a size of 0, 0.
///
/// # Returns
///
/// a fixed rectangle
#[doc(alias = "graphene_rect_zero")]
pub fn zero() -> Rect {
assert_initialized_main_thread!();
unsafe { from_glib_none(ffi::graphene_rect_zero()) }
}
}
impl PartialEq for Rect {
#[inline]
fn eq(&self, other: &Self) -> bool {
self.equal(other)
}
}
impl Eq for Rect {}