Struct gtk::ListStore [−][src]
pub struct ListStore(_);
Expand description
The ListStore
object is a list model for use with a TreeView
widget. It implements the TreeModel
interface, and consequentialy,
can use all of the methods available there. It also implements the
TreeSortable
interface so it can be sorted by the view.
Finally, it also implements the tree
[drag and drop][gtk3-GtkTreeView-drag-and-drop]
interfaces.
The ListStore
can accept most GObject types as a column type, though
it can’t accept all custom types. Internally, it will keep a copy of
data passed in (such as a string or a boxed pointer). Columns that
accept GObjects
are handled a little differently. The
ListStore
will keep a reference to the object instead of copying the
value. As a result, if the object is modified, it is up to the
application writer to call TreeModelExt::row_changed()
to emit the
signal::TreeModel::row_changed
signal. This most commonly affects lists with
GdkPixbufs
stored.
An example for creating a simple list store:
⚠️ The following code is in C ⚠️
enum {
COLUMN_STRING,
COLUMN_INT,
COLUMN_BOOLEAN,
N_COLUMNS
};
{
GtkListStore *list_store;
GtkTreePath *path;
GtkTreeIter iter;
gint i;
list_store = gtk_list_store_new (N_COLUMNS,
G_TYPE_STRING,
G_TYPE_INT,
G_TYPE_BOOLEAN);
for (i = 0; i < 10; i++)
{
gchar *some_data;
some_data = get_some_data (i);
// Add a new row to the model
gtk_list_store_append (list_store, &iter);
gtk_list_store_set (list_store, &iter,
COLUMN_STRING, some_data,
COLUMN_INT, i,
COLUMN_BOOLEAN, FALSE,
-1);
// As the store will keep a copy of the string internally,
// we free some_data.
g_free (some_data);
}
// Modify a particular row
path = gtk_tree_path_new_from_string ("4");
gtk_tree_model_get_iter (GTK_TREE_MODEL (list_store),
&iter,
path);
gtk_tree_path_free (path);
gtk_list_store_set (list_store, &iter,
COLUMN_BOOLEAN, TRUE,
-1);
}
Performance Considerations
Internally, the ListStore
was implemented with a linked list with
a tail pointer prior to GTK+ 2.6. As a result, it was fast at data
insertion and deletion, and not fast at random data access. The
ListStore
sets the TreeModelFlags::ITERS_PERSIST
flag, which means
that GtkTreeIters
can be cached while the row exists. Thus, if
access to a particular row is needed often and your code is expected to
run on older versions of GTK+, it is worth keeping the iter around.
Atomic Operations
It is important to note that only the methods
gtk_list_store_insert_with_values()
and gtk_list_store_insert_with_valuesv()
are atomic, in the sense that the row is being appended to the store and the
values filled in in a single operation with regard to TreeModel
signaling.
In contrast, using e.g. GtkListStoreExt::append()
and then gtk_list_store_set()
will first create a row, which triggers the signal::TreeModel::row-inserted
signal
on ListStore
. The row, however, is still empty, and any signal handler
connecting to signal::TreeModel::row-inserted
on this particular store should be prepared
for the situation that the row might be empty. This is especially important
if you are wrapping the ListStore
inside a TreeModelFilter
and are
using a GtkTreeModelFilterVisibleFunc
. Using any of the non-atomic operations
to append rows to the ListStore
will cause the
GtkTreeModelFilterVisibleFunc
to be visited with an empty row first; the
function must be prepared for that.
GtkListStore as GtkBuildable
The GtkListStore implementation of the GtkBuildable interface allows
to specify the model columns with a <columns>
element that may contain
multiple <column>
elements, each specifying one model column. The “type”
attribute specifies the data type for the column.
Additionally, it is possible to specify content for the list store
in the UI definition, with the <data>
element. It can contain multiple
<row>
elements, each specifying to content for one row of the list model.
Inside a <row>
, the <col>
elements specify the content for individual cells.
Note that it is probably more common to define your models in the code, and one might consider it a layering violation to specify the content of a list store in a UI definition, data, not presentation, and common wisdom is to separate the two, as far as possible.
An example of a UI Definition fragment for a list store:
⚠️ The following code is in C ⚠️
<object class="GtkListStore">
<columns>
<column type="gchararray"/>
<column type="gchararray"/>
<column type="gint"/>
</columns>
<data>
<row>
<col id="0">John</col>
<col id="1">Doe</col>
<col id="2">25</col>
</row>
<row>
<col id="0">Johan</col>
<col id="1">Dahlin</col>
<col id="2">50</col>
</row>
</data>
</object>
Implements
GtkListStoreExt
, glib::ObjectExt
, BuildableExt
, TreeDragDestExt
, TreeDragSourceExt
, TreeModelExt
, TreeSortableExt
, GtkListStoreExtManual
, BuildableExtManual
, TreeSortableExtManual
Implementations
Creates a new list store as with n_columns
columns each of the types passed
in. Note that only types derived from standard GObject fundamental types
are supported.
As an example, gtk_list_store_new (3, G_TYPE_INT, G_TYPE_STRING, GDK_TYPE_PIXBUF);
will create a new ListStore
with three columns, of type
int, string and gdk_pixbuf::Pixbuf
respectively.
n_columns
number of columns in the list store
Returns
a new ListStore
Trait Implementations
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
Returns the type identifier of Self
.
Auto Trait Implementations
impl RefUnwindSafe for ListStore
impl UnwindSafe for ListStore
Blanket Implementations
Mutably borrows from an owned value. Read more
Upcasts an object to a superclass or interface T
. Read more
Upcasts an object to a reference of its superclass or interface T
. Read more
Tries to downcast to a subclass or interface implementor T
. Read more
Tries to downcast to a reference of its subclass or interface implementor T
. Read more
Tries to cast to an object of type T
. This handles upcasting, downcasting
and casting between interface and interface implementors. All checks are performed at
runtime, while downcast
and upcast
will do many checks at compile-time already. Read more
Tries to cast to reference to an object of type T
. This handles upcasting, downcasting
and casting between interface and interface implementors. All checks are performed at
runtime, while downcast
and upcast
will do many checks at compile-time already. Read more
Casts to T
unconditionally. Read more
Casts to &T
unconditionally. Read more
Returns true
if the object is an instance of (can be cast to) T
.
pub fn set_properties_from_value(
&self,
property_values: &[(&str, Value)]
) -> Result<(), BoolError>
pub fn set_property<'a, N, V>(
&self,
property_name: N,
value: V
) -> Result<(), BoolError> where
V: ToValue,
N: Into<&'a str>,
pub fn set_property_from_value<'a, N>(
&self,
property_name: N,
value: &Value
) -> Result<(), BoolError> where
N: Into<&'a str>,
Safety Read more
Safety Read more
Safety Read more
Safety Read more
pub fn connect_notify<F>(&self, name: Option<&str>, f: F) -> SignalHandlerId where
F: 'static + Fn(&T, &ParamSpec) + Send + Sync,
pub fn connect_notify_local<F>(
&self,
name: Option<&str>,
f: F
) -> SignalHandlerId where
F: 'static + Fn(&T, &ParamSpec),
pub unsafe fn connect_notify_unsafe<F>(
&self,
name: Option<&str>,
f: F
) -> SignalHandlerId where
F: Fn(&T, &ParamSpec),
pub fn has_property<'a, N>(&self, property_name: N, type_: Option<Type>) -> bool where
N: Into<&'a str>,
pub fn find_property<'a, N>(&self, property_name: N) -> Option<ParamSpec> where
N: Into<&'a str>,
pub fn connect<'a, N, F>(
&self,
signal_name: N,
after: bool,
callback: F
) -> Result<SignalHandlerId, BoolError> where
F: Fn(&[Value]) -> Option<Value> + Send + Sync + 'static,
N: Into<&'a str>,
Same as connect
but takes a SignalId
instead of a signal name.
pub fn connect_local<'a, N, F>(
&self,
signal_name: N,
after: bool,
callback: F
) -> Result<SignalHandlerId, BoolError> where
F: Fn(&[Value]) -> Option<Value> + 'static,
N: Into<&'a str>,
Same as connect_local
but takes a SignalId
instead of a signal name.
pub unsafe fn connect_unsafe<'a, N, F>(
&self,
signal_name: N,
after: bool,
callback: F
) -> Result<SignalHandlerId, BoolError> where
F: Fn(&[Value]) -> Option<Value>,
N: Into<&'a str>,
Same as connect_unsafe
but takes a SignalId
instead of a signal name.
Emit signal by signal id.
Emit signal with details by signal id.
Emit signal by it’s name.
pub fn bind_property<'a, O, N, M>(
&'a self,
source_property: N,
target: &'a O,
target_property: M
) -> BindingBuilder<'a> where
O: ObjectType,
N: Into<&'a str>,
M: Into<&'a str>,
Same as emit
but takes Value
for the arguments.
Same as emit_by_name
but takes Value
for the arguments.
Returns a SendValue
clone of self
.
impl<'a, T, C> FromValueOptional<'a> for T where
C: ValueTypeChecker<Error = ValueTypeMismatchOrNoneError>,
T: FromValue<'a, Checker = C>,