Struct gtk4::Builder [−][src]
pub struct Builder(_);
Expand description
A Builder
reads XML descriptions of a user interface and
instantiates the described objects.
To create a Builder
from a user interface description, call
from_file()
, from_resource()
or from_string()
.
In the (unusual) case that you want to add user interface
descriptions from multiple sources to the same Builder
you can
call new()
to get an empty builder and populate it by
(multiple) calls to add_from_file()
,
add_from_resource()
or
add_from_string()
.
A Builder
holds a reference to all objects that it has constructed
and drops these references when it is finalized. This finalization can
cause the destruction of non-widget objects or widgets which are not
contained in a toplevel window. For toplevel windows constructed by a
builder, it is the responsibility of the user to call
Gtk::
Window::destroy()`` to get rid of them and all the widgets
they contain.
The functions object()
and
objects()
can be used to access the widgets in
the interface by the names assigned to them inside the UI description.
Toplevel windows returned by these functions will stay around until the
user explicitly destroys them with Gtk::
Window::destroy()``. Other
widgets will either be part of a larger hierarchy constructed by the
builder (in which case you should not have to worry about their lifecycle),
or without a parent, in which case they have to be added to some container
to make use of them. Non-widget objects need to be reffed with
g_object_ref()
to keep them beyond the lifespan of the builder.
GtkBuilder UI Definitions
Builder
parses textual descriptions of user interfaces which are
specified in XML format. We refer to these descriptions as “GtkBuilder
UI definitions” or just “UI definitions” if the context is clear.
The toplevel element is <interface>
. It optionally takes a “domain”
attribute, which will make the builder look for translated strings
using dgettext()
in the domain specified. This can also be done by
calling set_translation_domain()
on the builder.
Objects are described by <object>
elements, which can contain
<property>
elements to set properties, <signal>
elements which
connect signals to handlers, and <child>
elements, which describe
child objects (most often widgets inside a container, but also e.g.
actions in an action group, or columns in a tree model). A <child>
element contains an <object>
element which describes the child object.
The target toolkit version(s) are described by <requires>
elements,
the “lib” attribute specifies the widget library in question (currently
the only supported value is “gtk”) and the “version” attribute specifies
the target version in the form “<major>
.<minor>
”. Builder
will
error out if the version requirements are not met.
Typically, the specific kind of object represented by an <object>
element is specified by the “class” attribute. If the type has not
been loaded yet, GTK tries to find the get_type()
function from the
class name by applying heuristics. This works in most cases, but if
necessary, it is possible to specify the name of the get_type()
function explicitly with the “type-func” attribute.
Objects may be given a name with the “id” attribute, which allows the
application to retrieve them from the builder with
object()
. An id is also necessary to use the
object as property value in other parts of the UI definition. GTK
reserves ids starting and ending with ___
(three consecutive
underscores) for its own purposes.
Setting properties of objects is pretty straightforward with the
<property>
element: the “name” attribute specifies the name of the
property, and the content of the element specifies the value.
If the “translatable” attribute is set to a true value, GTK uses
gettext()
(or dgettext()
if the builder has a translation domain set)
to find a translation for the value. This happens before the value
is parsed, so it can be used for properties of any type, but it is
probably most useful for string properties. It is also possible to
specify a context to disambiguate short strings, and comments which
may help the translators.
Builder
can parse textual representations for the most common
property types: characters, strings, integers, floating-point numbers,
booleans (strings like “TRUE”, “t”, “yes”, “y”, “1” are interpreted
as true
, strings like “FALSE”, “f”, “no”, “n”, “0” are interpreted
as false
), enumerations (can be specified by their name, nick or
integer value), flags (can be specified by their name, nick, integer
value, optionally combined with “|”, e.g.
“GTK_INPUT_HINT_EMOJI|GTK_INPUT_HINT_LOWERCASE”)
and colors (in a format understood by [gdk::
RGBA::parse()``][crate::gdk::RGBA::parse()
]).
GVariant
s can be specified in the format understood by
g_variant_parse()
, and pixbufs can be specified as a filename of an
image file to load.
Objects can be referred to by their name and by default refer to
objects declared in the local XML fragment and objects exposed via
expose_object()
. In general, Builder
allows
forward references to objects — declared in the local XML; an object
doesn’t have to be constructed before it can be referred to. The
exception to this rule is that an object has to be constructed before
it can be used as the value of a construct-only property.
It is also possible to bind a property value to another object’s
property value using the attributes “bind-source” to specify the
source object of the binding, and optionally, “bind-property” and
“bind-flags” to specify the source property and source binding flags
respectively. Internally, Builder
implements this using GBinding
objects. For more information see [ObjectExtManual::bind_property()
][crate::glib::prelude::ObjectExtManual::bind_property()].
Sometimes it is necessary to refer to widgets which have implicitly
been constructed by GTK as part of a composite widget, to set
properties on them or to add further children (e.g. the content area
of a Dialog
). This can be achieved by setting the “internal-child”
property of the <child>
element to a true value. Note that Builder
still requires an <object>
element for the internal child, even if it
has already been constructed.
A number of widgets have different places where a child can be added
(e.g. tabs vs. page content in notebooks). This can be reflected in
a UI definition by specifying the “type” attribute on a <child>
The possible values for the “type” attribute are described in the
sections describing the widget-specific portions of UI definitions.
Signal handlers and function pointers
Signal handlers are set up with the <signal>
element. The “name”
attribute specifies the name of the signal, and the “handler” attribute
specifies the function to connect to the signal.
The remaining attributes, “after”, “swapped” and “object”, have the
same meaning as the corresponding parameters of the
g_signal_connect_object()
or g_signal_connect_data()
functions. A
“last_modification_time” attribute is also allowed, but it does not
have a meaning to the builder.
If you rely on GModule
support to lookup callbacks in the symbol table,
the following details should be noted:
When compiling applications for Windows, you must declare signal callbacks
with G_MODULE_EXPORT
, or they will not be put in the symbol table.
On Linux and Unix, this is not necessary; applications should instead
be compiled with the -Wl,–export-dynamic CFLAGS
, and linked against
gmodule-export-2.0
.
A GtkBuilder UI Definition
<interface>
<object class="GtkDialog" id="dialog1">
<child internal-child="content_area">
<object class="GtkBox" id="vbox1">
<child internal-child="action_area">
<object class="GtkBox" id="hbuttonbox1">
<child>
<object class="GtkButton" id="ok_button">
<property name="label" translatable="yes">_Ok</property>
<property name="use-underline">True</property>
<signal name="clicked" handler="ok_button_clicked"/>
</object>
</child>
</object>
</child>
</object>
</child>
</object>
</interface>
Beyond this general structure, several object classes define their
own XML DTD fragments for filling in the ANY placeholders in the DTD
above. Note that a custom element in a <child>
element gets parsed by
the custom tag handler of the parent object, while a custom element in
an <object>
element gets parsed by the custom tag handler of the object.
These XML fragments are explained in the documentation of the respective objects.
A <template>
tag can be used to define a widget class’s components.
See the GtkWidget documentation for details.
Implements
Implementations
Creates a new empty builder object.
This function is only useful if you intend to make multiple calls
to add_from_file()
, add_from_resource()
or add_from_string()
in order to merge multiple UI
descriptions into a single builder.
Returns
a new (empty) Builder
object
Parses the UI definition at resource_path
.
If there is an error locating the resource or parsing the description, then the program will be aborted.
resource_path
a GResource
resource path
Returns
a Builder
containing the described interface
Parses the UI definition in string
.
If string
is None
-terminated, then length
should be -1.
If length
is not -1, then it is the length of string
.
If there is an error parsing string
then the program will be
aborted. You should not attempt to parse user interface description
from untrusted sources.
string
a user interface (XML) description
length
the length of string
, or -1
Returns
a Builder
containing the interface described by string
Parses a resource file containing a UI definition
and merges it with the current contents of self
.
This function is useful if you need to call
set_current_object()
to add user data to
callbacks before loading GtkBuilder UI. Otherwise, you probably
want from_resource()
instead.
If an error occurs, 0 will be returned and error
will be assigned a
GError
from the GTK_BUILDER_ERROR
, G_MARKUP_ERROR
or G_RESOURCE_ERROR
domain.
It’s not really reasonable to attempt to handle failures of this
call. The only reasonable thing to do when an error is detected is
to call g_error()
.
resource_path
the path of the resource file to parse
Returns
Parses a string containing a UI definition and merges it
with the current contents of self
.
This function is useful if you need to call
set_current_object()
to add user data to
callbacks before loading Builder
UI. Otherwise, you probably
want from_string()
instead.
Upon errors false
will be returned and error
will be assigned a
GError
from the GTK_BUILDER_ERROR
, G_MARKUP_ERROR
or
G_VARIANT_PARSE_ERROR
domain.
It’s not really reasonable to attempt to handle failures of this
call. The only reasonable thing to do when an error is detected is
to call g_error()
.
buffer
the string to parse
length
the length of buffer
(may be -1 if buffer
is nul-terminated)
Returns
Parses a file containing a UI definition building only the
requested objects and merges them with the current contents
of self
.
Upon errors, 0 will be returned and error
will be assigned a
GError
from the GTK_BUILDER_ERROR
, G_MARKUP_ERROR
or G_FILE_ERROR
domain.
If you are adding an object that depends on an object that is not
its child (for instance a TreeView
that depends on its
TreeModel
), you have to explicitly list all of them in object_ids
.
filename
the name of the file to parse
object_ids
nul-terminated array of objects to build
Returns
Parses a resource file containing a UI definition, building
only the requested objects and merges them with the current
contents of self
.
Upon errors, 0 will be returned and error
will be assigned a
GError
from the GTK_BUILDER_ERROR
, G_MARKUP_ERROR
or G_RESOURCE_ERROR
domain.
If you are adding an object that depends on an object that is not
its child (for instance a TreeView
that depends on its
TreeModel
), you have to explicitly list all of them in object_ids
.
resource_path
the path of the resource file to parse
object_ids
nul-terminated array of objects to build
Returns
Parses a string containing a UI definition, building only the
requested objects and merges them with the current contents of
self
.
Upon errors false
will be returned and error
will be assigned a
GError
from the GTK_BUILDER_ERROR
or G_MARKUP_ERROR
domain.
If you are adding an object that depends on an object that is not
its child (for instance a TreeView
that depends on its
TreeModel
), you have to explicitly list all of them in object_ids
.
buffer
the string to parse
length
the length of buffer
(may be -1 if buffer
is nul-terminated)
object_ids
nul-terminated array of objects to build
Returns
Creates a closure to invoke the function called function_name
.
This is using the create_closure()
implementation of self
’s
BuilderScope
.
If no closure could be created, None
will be returned and error
will be set.
function_name
name of the function to look up
flags
closure creation flags
object
Object to create the closure with
Returns
A new closure for invoking function_name
Main private entry point for building composite components from template XML.
This is exported purely to let gtk-builder-tool
validate
templates, applications have no need to call this function.
object
the object that is being extended
template_type
the type that the template is for
buffer
the string to parse
length
the length of buffer
(may be -1 if buffer
is nul-terminated)
Returns
A positive value on success, 0 if an error occurred
Gets all objects that have been constructed by self
.
Note that this function does not increment the reference counts of the returned objects.
Returns
a
newly-allocated GSList
containing all the objects
constructed by the GtkBuilder instance
. It should be
freed by g_slist_free()
Sets the current object for the self
.
The current object can be thought of as the this
object that the
builder is working for and will often be used as the default object
when an object is optional.
WidgetExt::init_template()
for example will set the current
object to the widget the template is inited for. For functions like
from_resource()
, the current object will be None
.
current_object
the new current object
Demarshals a value from a string.
Unlike value_from_string()
, this function
takes a GType
instead of GParamSpec
.
Calls glib::Value::from_type()
on the value
argument, so it
need not be initialised beforehand.
Upon errors false
will be returned and error
will be
assigned a GError
from the GTK_BUILDER_ERROR
domain.
type_
the GType
of the value
string
the string representation of the value
Returns
true
on success
value
the GValue
to store the result in
pub fn connect_translation_domain_notify<F: Fn(&Self) + 'static>(
&self,
f: F
) -> SignalHandlerId
Parses the UI definition in the file filename
.
If there is an error opening the file or parsing the description then the program will be aborted. You should only ever attempt to parse user interface descriptions that are shipped as part of your program.
filename
filename of user interface description file
Returns
a Builder
containing the described interface
Demarshals a value from a string.
This function calls glib::Value::from_type()
on the value
argument,
so it need not be initialised beforehand.
Can handle char, uchar, boolean, int, uint, long,
ulong, enum, flags, float, double, string, gdk::RGBA
and
Adjustment
type values.
Upon errors false
will be returned and error
will be
assigned a GError
from the GTK_BUILDER_ERROR
domain.
pspec
the GParamSpec
for the property
string
the string representation of the value
Returns
true
on success
value
the GValue
to store the result in
Parses a file containing a UI definition and merges it with
the current contents of self
.
This function is useful if you need to call
set_current_object()
) to add user data to
callbacks before loading GtkBuilder UI. Otherwise, you probably
want from_file()
instead.
If an error occurs, 0 will be returned and error
will be assigned a
GError
from the GTK_BUILDER_ERROR
, G_MARKUP_ERROR
or G_FILE_ERROR
domains.
It’s not really reasonable to attempt to handle failures of this
call. You should not use this function with untrusted files (ie:
files that are not part of your application). Broken Builder
files can easily crash your program, and it’s possible that memory
was leaked leading up to the reported failure. The only reasonable
thing to do when an error is detected is to call g_error()
.
filename
the name of the file to parse
Returns
Trait Implementations
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
Returns the type identifier of Self
.
Auto Trait Implementations
impl RefUnwindSafe for Builder
impl UnwindSafe for Builder
Blanket Implementations
Mutably borrows from an owned value. Read more
Upcasts an object to a superclass or interface T
. Read more
Upcasts an object to a reference of its superclass or interface T
. Read more
Tries to downcast to a subclass or interface implementor T
. Read more
Tries to downcast to a reference of its subclass or interface implementor T
. Read more
Tries to cast to an object of type T
. This handles upcasting, downcasting
and casting between interface and interface implementors. All checks are performed at
runtime, while downcast
and upcast
will do many checks at compile-time already. Read more
Tries to cast to reference to an object of type T
. This handles upcasting, downcasting
and casting between interface and interface implementors. All checks are performed at
runtime, while downcast
and upcast
will do many checks at compile-time already. Read more
Casts to T
unconditionally. Read more
Casts to &T
unconditionally. Read more
Returns true
if the object is an instance of (can be cast to) T
.
pub fn set_property<'a, N, V>(
&self,
property_name: N,
value: V
) -> Result<(), BoolError> where
N: Into<&'a str>,
V: ToValue,
pub fn set_property_from_value<'a, N>(
&self,
property_name: N,
value: &Value
) -> Result<(), BoolError> where
N: Into<&'a str>,
pub fn set_properties_from_value(
&self,
property_values: &[(&str, Value)]
) -> Result<(), BoolError>
pub fn has_property<'a, N>(&self, property_name: N, type_: Option<Type>) -> bool where
N: Into<&'a str>,
pub fn find_property<'a, N>(&self, property_name: N) -> Option<ParamSpec> where
N: Into<&'a str>,
Safety Read more
Safety Read more
Safety Read more
Safety Read more
pub fn connect<'a, N, F>(
&self,
signal_name: N,
after: bool,
callback: F
) -> Result<SignalHandlerId, BoolError> where
N: Into<&'a str>,
F: 'static + Fn(&[Value]) -> Option<Value> + Send + Sync,
Same as connect
but takes a SignalId
instead of a signal name.
pub fn connect_local<'a, N, F>(
&self,
signal_name: N,
after: bool,
callback: F
) -> Result<SignalHandlerId, BoolError> where
N: Into<&'a str>,
F: 'static + Fn(&[Value]) -> Option<Value>,
Same as connect_local
but takes a SignalId
instead of a signal name.
pub unsafe fn connect_unsafe<'a, N, F>(
&self,
signal_name: N,
after: bool,
callback: F
) -> Result<SignalHandlerId, BoolError> where
N: Into<&'a str>,
F: Fn(&[Value]) -> Option<Value>,
Same as connect_unsafe
but takes a SignalId
instead of a signal name.
Emit signal by signal id.
Same as emit
but takes Value
for the arguments.
Emit signal by its name.
Same as emit_by_name
but takes Value
for the arguments.
Emit signal with details by signal id.
Same as emit_with_details
but takes Value
for the arguments.
pub fn connect_notify<F>(&self, name: Option<&str>, f: F) -> SignalHandlerId where
F: 'static + Fn(&T, &ParamSpec) + Send + Sync,
pub fn connect_notify_local<F>(
&self,
name: Option<&str>,
f: F
) -> SignalHandlerId where
F: 'static + Fn(&T, &ParamSpec),
pub unsafe fn connect_notify_unsafe<F>(
&self,
name: Option<&str>,
f: F
) -> SignalHandlerId where
F: Fn(&T, &ParamSpec),
pub fn bind_property<'a, O, N, M>(
&'a self,
source_property: N,
target: &'a O,
target_property: M
) -> BindingBuilder<'a> where
O: ObjectType,
N: Into<&'a str>,
M: Into<&'a str>,
Returns a SendValue
clone of self
.