gtk4

Struct TreeModel

Source
pub struct TreeModel { /* private fields */ }
👎Deprecated: Since 4.10
Expand description

Use gio::ListModel instead The tree interface used by GtkTreeView

The TreeModel interface defines a generic tree interface for use by the TreeView widget. It is an abstract interface, and is designed to be usable with any appropriate data structure. The programmer just has to implement this interface on their own data type for it to be viewable by a TreeView widget.

The model is represented as a hierarchical tree of strongly-typed, columned data. In other words, the model can be seen as a tree where every node has different values depending on which column is being queried. The type of data found in a column is determined by using the GType system (ie. G_TYPE_INT, GTK_TYPE_BUTTON, G_TYPE_POINTER, etc). The types are homogeneous per column across all nodes. It is important to note that this interface only provides a way of examining a model and observing changes. The implementation of each individual model decides how and if changes are made.

In order to make life simpler for programmers who do not need to write their own specialized model, two generic models are provided — the TreeStore and the ListStore. To use these, the developer simply pushes data into these models as necessary. These models provide the data structure as well as all appropriate tree interfaces. As a result, implementing drag and drop, sorting, and storing data is trivial. For the vast majority of trees and lists, these two models are sufficient.

Models are accessed on a node/column level of granularity. One can query for the value of a model at a certain node and a certain column on that node. There are two structures used to reference a particular node in a model. They are the TreePath and the TreeIter (“iter” is short for iterator). Most of the interface consists of operations on a TreeIter.

A path is essentially a potential node. It is a location on a model that may or may not actually correspond to a node on a specific model. A TreePath can be converted into either an array of unsigned integers or a string. The string form is a list of numbers separated by a colon. Each number refers to the offset at that level. Thus, the path 0 refers to the root node and the path 2:4 refers to the fifth child of the third node.

By contrast, a TreeIter is a reference to a specific node on a specific model. It is a generic struct with an integer and three generic pointers. These are filled in by the model in a model-specific way. One can convert a path to an iterator by calling gtk_tree_model_get_iter(). These iterators are the primary way of accessing a model and are similar to the iterators used by TextBuffer. They are generally statically allocated on the stack and only used for a short time. The model interface defines a set of operations using them for navigating the model.

It is expected that models fill in the iterator with private data. For example, the ListStore model, which is internally a simple linked list, stores a list node in one of the pointers. The TreeModelSort stores an array and an offset in two of the pointers. Additionally, there is an integer field. This field is generally filled with a unique stamp per model. This stamp is for catching errors resulting from using invalid iterators with a model.

The lifecycle of an iterator can be a little confusing at first. Iterators are expected to always be valid for as long as the model is unchanged (and doesn’t emit a signal). The model is considered to own all outstanding iterators and nothing needs to be done to free them from the user’s point of view. Additionally, some models guarantee that an iterator is valid for as long as the node it refers to is valid (most notably the TreeStore and ListStore). Although generally uninteresting, as one always has to allow for the case where iterators do not persist beyond a signal, some very important performance enhancements were made in the sort model. As a result, the TreeModelFlags::ITERS_PERSIST flag was added to indicate this behavior.

To help show some common operation of a model, some examples are provided. The first example shows three ways of getting the iter at the location 3:2:5. While the first method shown is easier, the second is much more common, as you often get paths from callbacks.

§Acquiring a TreeIter

⚠️ The following code is in c ⚠️

// Three ways of getting the iter pointing to the location
GtkTreePath *path;
GtkTreeIter iter;
GtkTreeIter parent_iter;

// get the iterator from a string
gtk_tree_model_get_iter_from_string (model,
                                     &iter,
                                     "3:2:5");

// get the iterator from a path
path = gtk_tree_path_new_from_string ("3:2:5");
gtk_tree_model_get_iter (model, &iter, path);
gtk_tree_path_free (path);

// walk the tree to find the iterator
gtk_tree_model_iter_nth_child (model, &iter,
                               NULL, 3);
parent_iter = iter;
gtk_tree_model_iter_nth_child (model, &iter,
                               &parent_iter, 2);
parent_iter = iter;
gtk_tree_model_iter_nth_child (model, &iter,
                               &parent_iter, 5);

This second example shows a quick way of iterating through a list and getting a string and an integer from each row. The populate_model() function used below is not shown, as it is specific to the ListStore. For information on how to write such a function, see the ListStore documentation.

§Reading data from a TreeModel

⚠️ The following code is in c ⚠️

enum
{
  STRING_COLUMN,
  INT_COLUMN,
  N_COLUMNS
};

...

GtkTreeModel *list_store;
GtkTreeIter iter;
gboolean valid;
int row_count = 0;

// make a new list_store
list_store = gtk_list_store_new (N_COLUMNS,
                                 G_TYPE_STRING,
                                 G_TYPE_INT);

// Fill the list store with data
populate_model (list_store);

// Get the first iter in the list, check it is valid and walk
// through the list, reading each row.

valid = gtk_tree_model_get_iter_first (list_store,
                                       &iter);
while (valid)
 {
   char *str_data;
   int    int_data;

   // Make sure you terminate calls to gtk_tree_model_get() with a “-1” value
   gtk_tree_model_get (list_store, &iter,
                       STRING_COLUMN, &str_data,
                       INT_COLUMN, &int_data,
                       -1);

   // Do something with the data
   g_print ("Row %d: (%s,%d)\n",
            row_count, str_data, int_data);
   g_free (str_data);

   valid = gtk_tree_model_iter_next (list_store,
                                     &iter);
   row_count++;
 }

The TreeModel interface contains two methods for reference counting: gtk_tree_model_ref_node() and gtk_tree_model_unref_node(). These two methods are optional to implement. The reference counting is meant as a way for views to let models know when nodes are being displayed. TreeView will take a reference on a node when it is visible, which means the node is either in the toplevel or expanded. Being displayed does not mean that the node is currently directly visible to the user in the viewport. Based on this reference counting scheme a caching model, for example, can decide whether or not to cache a node based on the reference count. A file-system based model would not want to keep the entire file hierarchy in memory, but just the folders that are currently expanded in every current view.

When working with reference counting, the following rules must be taken into account:

  • Never take a reference on a node without owning a reference on its parent. This means that all parent nodes of a referenced node must be referenced as well.

  • Outstanding references on a deleted node are not released. This is not possible because the node has already been deleted by the time the row-deleted signal is received.

  • Models are not obligated to emit a signal on rows of which none of its siblings are referenced. To phrase this differently, signals are only required for levels in which nodes are referenced. For the root level however, signals must be emitted at all times (however the root level is always referenced when any view is attached).

§Signals

§row-changed

This signal is emitted when a row in the model has changed.

§row-deleted

This signal is emitted when a row has been deleted.

Note that no iterator is passed to the signal handler, since the row is already deleted.

This should be called by models after a row has been removed. The location pointed to by @path should be the location that the row previously was at. It may not be a valid location anymore.

§row-has-child-toggled

This signal is emitted when a row has gotten the first child row or lost its last child row.

§row-inserted

This signal is emitted when a new row has been inserted in the model.

Note that the row may still be empty at this point, since it is a common pattern to first insert an empty row, and then fill it with the desired values.

§rows-reordered

This signal is emitted when the children of a node in the TreeModel have been reordered.

Note that this signal is not emitted when rows are reordered by DND, since this is implemented by removing and then reinserting the row.

§Implements

TreeModelExt, TreeModelExtManual

GLib type: GObject with reference counted clone semantics.

Implementations§

Source§

impl TreeModel

Source

pub const NONE: Option<&'static TreeModel> = None

👎Deprecated: Since 4.10

Trait Implementations§

Source§

impl Clone for TreeModel

Source§

fn clone(&self) -> Self

Makes a clone of this shared reference.

This increments the strong reference count of the object. Dropping the object will decrement it again.

1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for TreeModel

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl HasParamSpec for TreeModel

Source§

type ParamSpec = ParamSpecObject

Source§

type SetValue = TreeModel

Preferred value to be used as setter for the associated ParamSpec.
Source§

type BuilderFn = fn(_: &str) -> ParamSpecObjectBuilder<'_, TreeModel>

Source§

fn param_spec_builder() -> Self::BuilderFn

Source§

impl Hash for TreeModel

Source§

fn hash<H>(&self, state: &mut H)
where H: Hasher,

Hashes the memory address of this object.

1.3.0 · Source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
Source§

impl Ord for TreeModel

Source§

fn cmp(&self, other: &Self) -> Ordering

Comparison for two GObjects.

Compares the memory addresses of the provided objects.

1.21.0 · Source§

fn max(self, other: Self) -> Self
where Self: Sized,

Compares and returns the maximum of two values. Read more
1.21.0 · Source§

fn min(self, other: Self) -> Self
where Self: Sized,

Compares and returns the minimum of two values. Read more
1.50.0 · Source§

fn clamp(self, min: Self, max: Self) -> Self
where Self: Sized,

Restrict a value to a certain interval. Read more
Source§

impl<OT: ObjectType> PartialEq<OT> for TreeModel

Source§

fn eq(&self, other: &OT) -> bool

Equality for two GObjects.

Two GObjects are equal if their memory addresses are equal.

1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl<OT: ObjectType> PartialOrd<OT> for TreeModel

Source§

fn partial_cmp(&self, other: &OT) -> Option<Ordering>

Partial comparison for two GObjects.

Compares the memory addresses of the provided objects.

1.0.0 · Source§

fn lt(&self, other: &Rhs) -> bool

Tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · Source§

fn le(&self, other: &Rhs) -> bool

Tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · Source§

fn gt(&self, other: &Rhs) -> bool

Tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · Source§

fn ge(&self, other: &Rhs) -> bool

Tests greater than or equal to (for self and other) and is used by the >= operator. Read more
Source§

impl StaticType for TreeModel

Source§

fn static_type() -> Type

Returns the type identifier of Self.
Source§

impl Eq for TreeModel

Source§

impl IsA<TreeModel> for ListStore

Source§

impl IsA<TreeModel> for TreeModelFilter

Source§

impl IsA<TreeModel> for TreeModelSort

Source§

impl IsA<TreeModel> for TreeSortable

Source§

impl IsA<TreeModel> for TreeStore

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> Cast for T
where T: ObjectType,

Source§

fn upcast<T>(self) -> T
where T: ObjectType, Self: IsA<T>,

Upcasts an object to a superclass or interface T. Read more
Source§

fn upcast_ref<T>(&self) -> &T
where T: ObjectType, Self: IsA<T>,

Upcasts an object to a reference of its superclass or interface T. Read more
Source§

fn downcast<T>(self) -> Result<T, Self>
where T: ObjectType, Self: MayDowncastTo<T>,

Tries to downcast to a subclass or interface implementor T. Read more
Source§

fn downcast_ref<T>(&self) -> Option<&T>
where T: ObjectType, Self: MayDowncastTo<T>,

Tries to downcast to a reference of its subclass or interface implementor T. Read more
Source§

fn dynamic_cast<T>(self) -> Result<T, Self>
where T: ObjectType,

Tries to cast to an object of type T. This handles upcasting, downcasting and casting between interface and interface implementors. All checks are performed at runtime, while upcast will do many checks at compile-time already. downcast will perform the same checks at runtime as dynamic_cast, but will also ensure some amount of compile-time safety. Read more
Source§

fn dynamic_cast_ref<T>(&self) -> Option<&T>
where T: ObjectType,

Tries to cast to reference to an object of type T. This handles upcasting, downcasting and casting between interface and interface implementors. All checks are performed at runtime, while downcast and upcast will do many checks at compile-time already. Read more
Source§

unsafe fn unsafe_cast<T>(self) -> T
where T: ObjectType,

Casts to T unconditionally. Read more
Source§

unsafe fn unsafe_cast_ref<T>(&self) -> &T
where T: ObjectType,

Casts to &T unconditionally. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> FromGlibContainerAsVec<<T as GlibPtrDefault>::GlibType, *const GList> for T

Source§

unsafe fn from_glib_none_num_as_vec(ptr: *const GList, num: usize) -> Vec<T>

Source§

unsafe fn from_glib_container_num_as_vec(_: *const GList, _: usize) -> Vec<T>

Source§

unsafe fn from_glib_full_num_as_vec(_: *const GList, _: usize) -> Vec<T>

Source§

impl<T> FromGlibContainerAsVec<<T as GlibPtrDefault>::GlibType, *const GPtrArray> for T

Source§

unsafe fn from_glib_none_num_as_vec(ptr: *const GPtrArray, num: usize) -> Vec<T>

Source§

unsafe fn from_glib_container_num_as_vec( _: *const GPtrArray, _: usize, ) -> Vec<T>

Source§

unsafe fn from_glib_full_num_as_vec(_: *const GPtrArray, _: usize) -> Vec<T>

Source§

impl<T> FromGlibContainerAsVec<<T as GlibPtrDefault>::GlibType, *const GSList> for T

Source§

unsafe fn from_glib_none_num_as_vec(ptr: *const GSList, num: usize) -> Vec<T>

Source§

unsafe fn from_glib_container_num_as_vec(_: *const GSList, _: usize) -> Vec<T>

Source§

unsafe fn from_glib_full_num_as_vec(_: *const GSList, _: usize) -> Vec<T>

Source§

impl<T> FromGlibContainerAsVec<<T as GlibPtrDefault>::GlibType, *mut GList> for T

Source§

unsafe fn from_glib_none_num_as_vec(ptr: *mut GList, num: usize) -> Vec<T>

Source§

unsafe fn from_glib_container_num_as_vec(ptr: *mut GList, num: usize) -> Vec<T>

Source§

unsafe fn from_glib_full_num_as_vec(ptr: *mut GList, num: usize) -> Vec<T>

Source§

impl<T> FromGlibContainerAsVec<<T as GlibPtrDefault>::GlibType, *mut GPtrArray> for T

Source§

unsafe fn from_glib_none_num_as_vec(ptr: *mut GPtrArray, num: usize) -> Vec<T>

Source§

unsafe fn from_glib_container_num_as_vec( ptr: *mut GPtrArray, num: usize, ) -> Vec<T>

Source§

unsafe fn from_glib_full_num_as_vec(ptr: *mut GPtrArray, num: usize) -> Vec<T>

Source§

impl<T> FromGlibContainerAsVec<<T as GlibPtrDefault>::GlibType, *mut GSList> for T

Source§

unsafe fn from_glib_none_num_as_vec(ptr: *mut GSList, num: usize) -> Vec<T>

Source§

unsafe fn from_glib_container_num_as_vec(ptr: *mut GSList, num: usize) -> Vec<T>

Source§

unsafe fn from_glib_full_num_as_vec(ptr: *mut GSList, num: usize) -> Vec<T>

Source§

impl<T> FromGlibPtrArrayContainerAsVec<<T as GlibPtrDefault>::GlibType, *const GList> for T

Source§

unsafe fn from_glib_none_as_vec(ptr: *const GList) -> Vec<T>

Source§

unsafe fn from_glib_container_as_vec(_: *const GList) -> Vec<T>

Source§

unsafe fn from_glib_full_as_vec(_: *const GList) -> Vec<T>

Source§

impl<T> FromGlibPtrArrayContainerAsVec<<T as GlibPtrDefault>::GlibType, *const GPtrArray> for T

Source§

unsafe fn from_glib_none_as_vec(ptr: *const GPtrArray) -> Vec<T>

Source§

unsafe fn from_glib_container_as_vec(_: *const GPtrArray) -> Vec<T>

Source§

unsafe fn from_glib_full_as_vec(_: *const GPtrArray) -> Vec<T>

Source§

impl<T> FromGlibPtrArrayContainerAsVec<<T as GlibPtrDefault>::GlibType, *const GSList> for T

Source§

unsafe fn from_glib_none_as_vec(ptr: *const GSList) -> Vec<T>

Source§

unsafe fn from_glib_container_as_vec(_: *const GSList) -> Vec<T>

Source§

unsafe fn from_glib_full_as_vec(_: *const GSList) -> Vec<T>

Source§

impl<T> FromGlibPtrArrayContainerAsVec<<T as GlibPtrDefault>::GlibType, *mut GList> for T

Source§

unsafe fn from_glib_none_as_vec(ptr: *mut GList) -> Vec<T>

Source§

unsafe fn from_glib_container_as_vec(ptr: *mut GList) -> Vec<T>

Source§

unsafe fn from_glib_full_as_vec(ptr: *mut GList) -> Vec<T>

Source§

impl<T> FromGlibPtrArrayContainerAsVec<<T as GlibPtrDefault>::GlibType, *mut GPtrArray> for T

Source§

unsafe fn from_glib_none_as_vec(ptr: *mut GPtrArray) -> Vec<T>

Source§

unsafe fn from_glib_container_as_vec(ptr: *mut GPtrArray) -> Vec<T>

Source§

unsafe fn from_glib_full_as_vec(ptr: *mut GPtrArray) -> Vec<T>

Source§

impl<T> FromGlibPtrArrayContainerAsVec<<T as GlibPtrDefault>::GlibType, *mut GSList> for T

Source§

unsafe fn from_glib_none_as_vec(ptr: *mut GSList) -> Vec<T>

Source§

unsafe fn from_glib_container_as_vec(ptr: *mut GSList) -> Vec<T>

Source§

unsafe fn from_glib_full_as_vec(ptr: *mut GSList) -> Vec<T>

Source§

impl<O> GObjectPropertyExpressionExt for O
where O: IsA<Object>,

Source§

fn property_expression(&self, property_name: &str) -> PropertyExpression

Create an expression looking up an object’s property.
Source§

fn property_expression_weak(&self, property_name: &str) -> PropertyExpression

Create an expression looking up an object’s property with a weak reference.
Source§

fn this_expression(property_name: &str) -> PropertyExpression

Create an expression looking up a property in the bound this object.
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoClosureReturnValue for T
where T: Into<Value>,

Source§

impl<T> ObjectExt for T
where T: ObjectType,

Source§

fn is<U>(&self) -> bool
where U: StaticType,

Returns true if the object is an instance of (can be cast to) T.
Source§

fn type_(&self) -> Type

Returns the type of the object.
Source§

fn object_class(&self) -> &Class<Object>

Returns the ObjectClass of the object. Read more
Source§

fn class(&self) -> &Class<T>
where T: IsClass,

Returns the class of the object.
Source§

fn class_of<U>(&self) -> Option<&Class<U>>
where U: IsClass,

Returns the class of the object in the given type T. Read more
Source§

fn interface<U>(&self) -> Option<InterfaceRef<'_, U>>
where U: IsInterface,

Returns the interface T of the object. Read more
Source§

fn set_property(&self, property_name: &str, value: impl Into<Value>)

Sets the property property_name of the object to value value. Read more
Source§

fn set_property_from_value(&self, property_name: &str, value: &Value)

Sets the property property_name of the object to value value. Read more
Source§

fn set_properties(&self, property_values: &[(&str, &dyn ToValue)])

Sets multiple properties of the object at once. Read more
Source§

fn set_properties_from_value(&self, property_values: &[(&str, Value)])

Sets multiple properties of the object at once. Read more
Source§

fn property<V>(&self, property_name: &str) -> V
where V: for<'b> FromValue<'b> + 'static,

Gets the property property_name of the object and cast it to the type V. Read more
Source§

fn property_value(&self, property_name: &str) -> Value

Gets the property property_name of the object. Read more
Source§

fn has_property(&self, property_name: &str, type_: Option<Type>) -> bool

Check if the object has a property property_name of the given type_. Read more
Source§

fn property_type(&self, property_name: &str) -> Option<Type>

Get the type of the property property_name of this object. Read more
Source§

fn find_property(&self, property_name: &str) -> Option<ParamSpec>

Get the ParamSpec of the property property_name of this object.
Source§

fn list_properties(&self) -> PtrSlice<ParamSpec>

Return all ParamSpec of the properties of this object.
Source§

fn freeze_notify(&self) -> PropertyNotificationFreezeGuard

Freeze all property notifications until the return guard object is dropped. Read more
Source§

unsafe fn set_qdata<QD>(&self, key: Quark, value: QD)
where QD: 'static,

Set arbitrary data on this object with the given key. Read more
Source§

unsafe fn qdata<QD>(&self, key: Quark) -> Option<NonNull<QD>>
where QD: 'static,

Return previously set arbitrary data of this object with the given key. Read more
Source§

unsafe fn steal_qdata<QD>(&self, key: Quark) -> Option<QD>
where QD: 'static,

Retrieve previously set arbitrary data of this object with the given key. Read more
Source§

unsafe fn set_data<QD>(&self, key: &str, value: QD)
where QD: 'static,

Set arbitrary data on this object with the given key. Read more
Source§

unsafe fn data<QD>(&self, key: &str) -> Option<NonNull<QD>>
where QD: 'static,

Return previously set arbitrary data of this object with the given key. Read more
Source§

unsafe fn steal_data<QD>(&self, key: &str) -> Option<QD>
where QD: 'static,

Retrieve previously set arbitrary data of this object with the given key. Read more
Source§

fn block_signal(&self, handler_id: &SignalHandlerId)

Block a given signal handler. Read more
Source§

fn unblock_signal(&self, handler_id: &SignalHandlerId)

Unblock a given signal handler.
Source§

fn stop_signal_emission(&self, signal_id: SignalId, detail: Option<Quark>)

Stop emission of the currently emitted signal.
Source§

fn stop_signal_emission_by_name(&self, signal_name: &str)

Stop emission of the currently emitted signal by the (possibly detailed) signal name.
Source§

fn connect<F>( &self, signal_name: &str, after: bool, callback: F, ) -> SignalHandlerId
where F: Fn(&[Value]) -> Option<Value> + Send + Sync + 'static,

Connect to the signal signal_name on this object. Read more
Source§

fn connect_id<F>( &self, signal_id: SignalId, details: Option<Quark>, after: bool, callback: F, ) -> SignalHandlerId
where F: Fn(&[Value]) -> Option<Value> + Send + Sync + 'static,

Connect to the signal signal_id on this object. Read more
Source§

fn connect_local<F>( &self, signal_name: &str, after: bool, callback: F, ) -> SignalHandlerId
where F: Fn(&[Value]) -> Option<Value> + 'static,

Connect to the signal signal_name on this object. Read more
Source§

fn connect_local_id<F>( &self, signal_id: SignalId, details: Option<Quark>, after: bool, callback: F, ) -> SignalHandlerId
where F: Fn(&[Value]) -> Option<Value> + 'static,

Connect to the signal signal_id on this object. Read more
Source§

unsafe fn connect_unsafe<F>( &self, signal_name: &str, after: bool, callback: F, ) -> SignalHandlerId
where F: Fn(&[Value]) -> Option<Value>,

Connect to the signal signal_name on this object. Read more
Source§

unsafe fn connect_unsafe_id<F>( &self, signal_id: SignalId, details: Option<Quark>, after: bool, callback: F, ) -> SignalHandlerId
where F: Fn(&[Value]) -> Option<Value>,

Connect to the signal signal_id on this object. Read more
Source§

fn connect_closure( &self, signal_name: &str, after: bool, closure: RustClosure, ) -> SignalHandlerId

Connect a closure to the signal signal_name on this object. Read more
Source§

fn connect_closure_id( &self, signal_id: SignalId, details: Option<Quark>, after: bool, closure: RustClosure, ) -> SignalHandlerId

Connect a closure to the signal signal_id on this object. Read more
Source§

fn watch_closure(&self, closure: &impl AsRef<Closure>)

Limits the lifetime of closure to the lifetime of the object. When the object’s reference count drops to zero, the closure will be invalidated. An invalidated closure will ignore any calls to invoke_with_values, or invoke when using Rust closures.
Source§

fn emit<R>(&self, signal_id: SignalId, args: &[&dyn ToValue]) -> R

Emit signal by signal id. Read more
Source§

fn emit_with_values(&self, signal_id: SignalId, args: &[Value]) -> Option<Value>

Same as Self::emit but takes Value for the arguments.
Source§

fn emit_by_name<R>(&self, signal_name: &str, args: &[&dyn ToValue]) -> R

Emit signal by its name. Read more
Source§

fn emit_by_name_with_values( &self, signal_name: &str, args: &[Value], ) -> Option<Value>

Emit signal by its name. Read more
Source§

fn emit_by_name_with_details<R>( &self, signal_name: &str, details: Quark, args: &[&dyn ToValue], ) -> R

Emit signal by its name with details. Read more
Source§

fn emit_by_name_with_details_and_values( &self, signal_name: &str, details: Quark, args: &[Value], ) -> Option<Value>

Emit signal by its name with details. Read more
Source§

fn emit_with_details<R>( &self, signal_id: SignalId, details: Quark, args: &[&dyn ToValue], ) -> R

Emit signal by signal id with details. Read more
Source§

fn emit_with_details_and_values( &self, signal_id: SignalId, details: Quark, args: &[Value], ) -> Option<Value>

Emit signal by signal id with details. Read more
Source§

fn disconnect(&self, handler_id: SignalHandlerId)

Disconnect a previously connected signal handler.
Source§

fn connect_notify<F>(&self, name: Option<&str>, f: F) -> SignalHandlerId
where F: Fn(&T, &ParamSpec) + Send + Sync + 'static,

Connect to the notify signal of the object. Read more
Source§

fn connect_notify_local<F>(&self, name: Option<&str>, f: F) -> SignalHandlerId
where F: Fn(&T, &ParamSpec) + 'static,

Connect to the notify signal of the object. Read more
Source§

unsafe fn connect_notify_unsafe<F>( &self, name: Option<&str>, f: F, ) -> SignalHandlerId
where F: Fn(&T, &ParamSpec),

Connect to the notify signal of the object. Read more
Source§

fn notify(&self, property_name: &str)

Notify that the given property has changed its value. Read more
Source§

fn notify_by_pspec(&self, pspec: &ParamSpec)

Notify that the given property has changed its value. Read more
Source§

fn downgrade(&self) -> WeakRef<T>

Downgrade this object to a weak reference.
Source§

fn add_weak_ref_notify<F>(&self, f: F) -> WeakRefNotify<T>
where F: FnOnce() + Send + 'static,

Add a callback to be notified when the Object is disposed.
Source§

fn add_weak_ref_notify_local<F>(&self, f: F) -> WeakRefNotify<T>
where F: FnOnce() + 'static,

Add a callback to be notified when the Object is disposed. Read more
Source§

fn bind_property<'a, 'f, 't, O>( &'a self, source_property: &'a str, target: &'a O, target_property: &'a str, ) -> BindingBuilder<'a, 'f, 't>
where O: ObjectType,

Bind property source_property on this object to the target_property on the target object. Read more
Source§

fn ref_count(&self) -> u32

Returns the strong reference count of this object.
Source§

unsafe fn run_dispose(&self)

Runs the dispose mechanism of the object. Read more
Source§

impl<T> Property for T
where T: HasParamSpec,

Source§

type Value = T

Source§

impl<T> PropertyGet for T
where T: HasParamSpec,

Source§

type Value = T

Source§

fn get<R, F>(&self, f: F) -> R
where F: Fn(&<T as PropertyGet>::Value) -> R,

Source§

impl<T> StaticTypeExt for T
where T: StaticType,

Source§

fn ensure_type()

Ensures that the type has been registered with the type system.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T> TransparentType for T

Source§

impl<O> TreeModelExt for O
where O: IsA<TreeModel>,

Source§

fn foreach<P: FnMut(&TreeModel, &TreePath, &TreeIter) -> bool>(&self, func: P)

👎Deprecated: Since 4.10
Calls @func on each node in model in a depth-first fashion. Read more
Source§

fn column_type(&self, index_: i32) -> Type

👎Deprecated: Since 4.10
Returns the type of the column. Read more
Source§

fn flags(&self) -> TreeModelFlags

👎Deprecated: Since 4.10
Returns a set of flags supported by this interface. Read more
Source§

fn iter(&self, path: &TreePath) -> Option<TreeIter>

👎Deprecated: Since 4.10
Sets @iter to a valid iterator pointing to @path. Read more
Source§

fn iter_first(&self) -> Option<TreeIter>

👎Deprecated: Since 4.10
Initializes @iter with the first iterator in the tree (the one at the path “0”). Read more
Source§

fn iter_from_string(&self, path_string: &str) -> Option<TreeIter>

👎Deprecated: Since 4.10
Sets @iter to a valid iterator pointing to @path_string, if it exists. Read more
Source§

fn n_columns(&self) -> i32

👎Deprecated: Since 4.10
Returns the number of columns supported by @self. Read more
Source§

fn path(&self, iter: &TreeIter) -> TreePath

👎Deprecated: Since 4.10
Returns a newly-created TreePath referenced by @iter. Read more
Source§

fn string_from_iter(&self, iter: &TreeIter) -> Option<GString>

👎Deprecated: Since 4.10
Generates a string representation of the iter. Read more
Source§

fn iter_children(&self, parent: Option<&TreeIter>) -> Option<TreeIter>

👎Deprecated: Since 4.10
Sets @iter to point to the first child of @parent. Read more
Source§

fn iter_has_child(&self, iter: &TreeIter) -> bool

👎Deprecated: Since 4.10
Returns true if @iter has children, false otherwise. Read more
Source§

fn iter_n_children(&self, iter: Option<&TreeIter>) -> i32

👎Deprecated: Since 4.10
Returns the number of children that @iter has. Read more
Source§

fn iter_next(&self, iter: &TreeIter) -> bool

👎Deprecated: Since 4.10
Sets @iter to point to the node following it at the current level. Read more
Source§

fn iter_nth_child(&self, parent: Option<&TreeIter>, n: i32) -> Option<TreeIter>

👎Deprecated: Since 4.10
Sets @iter to be the child of @parent, using the given index. Read more
Source§

fn iter_parent(&self, child: &TreeIter) -> Option<TreeIter>

👎Deprecated: Since 4.10
Sets @iter to be the parent of @child. Read more
Source§

fn iter_previous(&self, iter: &TreeIter) -> bool

👎Deprecated: Since 4.10
Sets @iter to point to the previous node at the current level. Read more
Source§

fn row_changed(&self, path: &TreePath, iter: &TreeIter)

👎Deprecated: Since 4.10
Emits the ::row-changed signal on @self. Read more
Source§

fn row_deleted(&self, path: &TreePath)

👎Deprecated: Since 4.10
Emits the ::row-deleted signal on @self. Read more
Source§

fn row_has_child_toggled(&self, path: &TreePath, iter: &TreeIter)

👎Deprecated: Since 4.10
Emits the ::row-has-child-toggled signal on @self. Read more
Source§

fn row_inserted(&self, path: &TreePath, iter: &TreeIter)

👎Deprecated: Since 4.10
Emits the ::row-inserted signal on @self. Read more
Source§

fn connect_row_changed<F: Fn(&Self, &TreePath, &TreeIter) + 'static>( &self, f: F, ) -> SignalHandlerId

👎Deprecated: Since 4.10
This signal is emitted when a row in the model has changed. Read more
Source§

fn connect_row_deleted<F: Fn(&Self, &TreePath) + 'static>( &self, f: F, ) -> SignalHandlerId

👎Deprecated: Since 4.10
This signal is emitted when a row has been deleted. Read more
Source§

fn connect_row_has_child_toggled<F: Fn(&Self, &TreePath, &TreeIter) + 'static>( &self, f: F, ) -> SignalHandlerId

👎Deprecated: Since 4.10
This signal is emitted when a row has gotten the first child row or lost its last child row. Read more
Source§

fn connect_row_inserted<F: Fn(&Self, &TreePath, &TreeIter) + 'static>( &self, f: F, ) -> SignalHandlerId

👎Deprecated: Since 4.10
This signal is emitted when a new row has been inserted in the model. Read more
Source§

impl<O> TreeModelExtManual for O
where O: IsA<TreeModel>,

Source§

fn get_value(&self, iter: &TreeIter, column: i32) -> Value

👎Deprecated: Since 4.10
Source§

fn get<V: for<'b> FromValue<'b> + 'static>( &self, iter: &TreeIter, column: i32, ) -> V

👎Deprecated: Since 4.10
Similar to Self::get_value but panics if the value is of a different type. Gets the value of one or more cells in the row referenced by @iter. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T> TryFromClosureReturnValue for T
where T: for<'a> FromValue<'a> + StaticType + 'static,

Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<'a, T, C, E> FromValueOptional<'a> for T
where T: FromValue<'a, Checker = C>, C: ValueTypeChecker<Error = ValueTypeMismatchOrNoneError<E>>, E: Error + Send + 'static,

Source§

impl<Super, Sub> MayDowncastTo<Sub> for Super
where Super: IsA<Super>, Sub: IsA<Super>,