Struct gio::AsyncInitable

source ·
#[repr(transparent)]
pub struct AsyncInitable { /* private fields */ }
Expand description

This is the asynchronous version of Initable; it behaves the same in all ways except that initialization is asynchronous. For more details see the descriptions on Initable.

A class may implement both the Initable and AsyncInitable interfaces.

Users of objects implementing this are not intended to use the interface method directly; instead it will be used automatically in various ways. For C applications you generally just call new_async() directly, or indirectly via a foo_thing_new_async() wrapper. This will call AsyncInitableExt::init_async() under the cover, calling back with None and a set GError on failure.

A typical implementation might look something like this:

⚠️ The following code is in C ⚠️

enum {
   NOT_INITIALIZED,
   INITIALIZING,
   INITIALIZED
};

static void
_foo_ready_cb (Foo *self)
{
  GList *l;

  self->priv->state = INITIALIZED;

  for (l = self->priv->init_results; l != NULL; l = l->next)
    {
      GTask *task = l->data;

      if (self->priv->success)
        g_task_return_boolean (task, TRUE);
      else
        g_task_return_new_error (task, ...);
      g_object_unref (task);
    }

  g_list_free (self->priv->init_results);
  self->priv->init_results = NULL;
}

static void
foo_init_async (GAsyncInitable       *initable,
                int                   io_priority,
                GCancellable         *cancellable,
                GAsyncReadyCallback   callback,
                gpointer              user_data)
{
  Foo *self = FOO (initable);
  GTask *task;

  task = g_task_new (initable, cancellable, callback, user_data);
  g_task_set_name (task, G_STRFUNC);

  switch (self->priv->state)
    {
      case NOT_INITIALIZED:
        _foo_get_ready (self);
        self->priv->init_results = g_list_append (self->priv->init_results,
                                                  task);
        self->priv->state = INITIALIZING;
        break;
      case INITIALIZING:
        self->priv->init_results = g_list_append (self->priv->init_results,
                                                  task);
        break;
      case INITIALIZED:
        if (!self->priv->success)
          g_task_return_new_error (task, ...);
        else
          g_task_return_boolean (task, TRUE);
        g_object_unref (task);
        break;
    }
}

static gboolean
foo_init_finish (GAsyncInitable       *initable,
                 GAsyncResult         *result,
                 GError              **error)
{
  g_return_val_if_fail (g_task_is_valid (result, initable), FALSE);

  return g_task_propagate_boolean (G_TASK (result), error);
}

static void
foo_async_initable_iface_init (gpointer g_iface,
                               gpointer data)
{
  GAsyncInitableIface *iface = g_iface;

  iface->init_async = foo_init_async;
  iface->init_finish = foo_init_finish;
}

Implements

AsyncInitableExt

Implementations§

Helper function for constructing AsyncInitable object. This is similar to glib::Object::new() but also initializes the object asynchronously.

When the initialization is finished, callback will be called. You can then call g_async_initable_new_finish() to get the new object and check for any errors.

object_type

a GType supporting AsyncInitable.

io_priority

the [I/O priority][io-priority] of the operation

cancellable

optional Cancellable object, None to ignore.

callback

a GAsyncReadyCallback to call when the initialization is finished

first_property_name

the name of the first property, or None if no properties

Trait Implementations§

Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more
Formats the value using the given formatter. Read more
Feeds this value into the given Hasher. Read more
Feeds a slice of this type into the given Hasher. Read more
Override the virtual methods of this interface for the given subclass and do other interface initialization. Read more
Instance specific initialization. Read more
This method returns an Ordering between self and other. Read more
Compares and returns the maximum of two values. Read more
Compares and returns the minimum of two values. Read more
Restrict a value to a certain interval. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
Returns the type identifier of Self.

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more
Upcasts an object to a superclass or interface T. Read more
Upcasts an object to a reference of its superclass or interface T. Read more
Tries to downcast to a subclass or interface implementor T. Read more
Tries to downcast to a reference of its subclass or interface implementor T. Read more
Tries to cast to an object of type T. This handles upcasting, downcasting and casting between interface and interface implementors. All checks are performed at runtime, while downcast and upcast will do many checks at compile-time already. Read more
Tries to cast to reference to an object of type T. This handles upcasting, downcasting and casting between interface and interface implementors. All checks are performed at runtime, while downcast and upcast will do many checks at compile-time already. Read more
Casts to T unconditionally. Read more
Casts to &T unconditionally. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Returns true if the object is an instance of (can be cast to) T.
Returns the type of the object.
Returns the ObjectClass of the object. Read more
Returns the class of the object.
Returns the class of the object in the given type T. Read more
Returns the interface T of the object. Read more
Sets the property property_name of the object to value value. Read more
Sets the property property_name of the object to value value. Read more
Sets multiple properties of the object at once. Read more
Sets multiple properties of the object at once. Read more
Gets the property property_name of the object and cast it to the type V. Read more
Gets the property property_name of the object. Read more
Check if the object has a property property_name of the given type_. Read more
Get the type of the property property_name of this object. Read more
Get the ParamSpec of the property property_name of this object.
Return all ParamSpec of the properties of this object.
Freeze all property notifications until the return guard object is dropped. Read more
Set arbitrary data on this object with the given key. Read more
Return previously set arbitrary data of this object with the given key. Read more
Retrieve previously set arbitrary data of this object with the given key. Read more
Set arbitrary data on this object with the given key. Read more
Return previously set arbitrary data of this object with the given key. Read more
Retrieve previously set arbitrary data of this object with the given key. Read more
Block a given signal handler. Read more
Unblock a given signal handler.
Stop emission of the currently emitted signal.
Stop emission of the currently emitted signal by the (possibly detailed) signal name.
Connect to the signal signal_name on this object. Read more
Connect to the signal signal_id on this object. Read more
Connect to the signal signal_name on this object. Read more
Connect to the signal signal_id on this object. Read more
Connect to the signal signal_name on this object. Read more
Connect to the signal signal_id on this object. Read more
Connect a closure to the signal signal_name on this object. Read more
Connect a closure to the signal signal_id on this object. Read more
Limits the lifetime of closure to the lifetime of the object. When the object’s reference count drops to zero, the closure will be invalidated. An invalidated closure will ignore any calls to invoke_with_values, or invoke when using Rust closures. Read more
Emit signal by signal id. Read more
Same as Self::emit but takes Value for the arguments.
Emit signal by its name. Read more
Emit signal by its name. Read more
Emit signal by its name with details. Read more
Emit signal by its name with details. Read more
Emit signal by signal id with details. Read more
Emit signal by signal id with details. Read more
Disconnect a previously connected signal handler.
Connect to the notify signal of the object. Read more
Connect to the notify signal of the object. Read more
Connect to the notify signal of the object. Read more
Notify that the given property has changed its value. Read more
Notify that the given property has changed its value. Read more
Downgrade this object to a weak reference.
Add a callback to be notified when the Object is disposed.
Add a callback to be notified when the Object is disposed. Read more
Bind property source_property on this object to the target_property on the target object. Read more
Returns the strong reference count of this object.
Runs the dispose mechanism of the object. Read more
Ensures that the type has been registered with the type system.
The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
Converts the given value to a String. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.