#[repr(transparent)]
pub struct TreeModelFilter { /* private fields */ }
Expand description

A TreeModelFilter is a tree model which wraps another tree model, and can do the following things:

  • Filter specific rows, based on data from a “visible column”, a column storing booleans indicating whether the row should be filtered or not, or based on the return value of a “visible function”, which gets a model, iter and user_data and returns a boolean indicating whether the row should be filtered or not.

  • Modify the “appearance” of the model, using a modify function. This is extremely powerful and allows for just changing some values and also for creating a completely different model based on the given child model.

  • Set a different root node, also known as a “virtual root”. You can pass in a TreePath indicating the root node for the filter at construction time.

The basic API is similar to TreeModelSort. For an example on its usage, see the section on TreeModelSort.

When using TreeModelFilter, it is important to realize that TreeModelFilter maintains an internal cache of all nodes which are visible in its clients. The cache is likely to be a subtree of the tree exposed by the child model. TreeModelFilter will not cache the entire child model when unnecessary to not compromise the caching mechanism that is exposed by the reference counting scheme. If the child model implements reference counting, unnecessary signals may not be emitted because of reference counting rule 3, see the TreeModel documentation. (Note that e.g. TreeStore does not implement reference counting and will always emit all signals, even when the receiving node is not visible).

Because of this, limitations for possible visible functions do apply. In general, visible functions should only use data or properties from the node for which the visibility state must be determined, its siblings or its parents. Usually, having a dependency on the state of any child node is not possible, unless references are taken on these explicitly. When no such reference exists, no signals may be received for these child nodes (see reference couting rule number 3 in the TreeModel section).

Determining the visibility state of a given node based on the state of its child nodes is a frequently occurring use case. Therefore, TreeModelFilter explicitly supports this. For example, when a node does not have any children, you might not want the node to be visible. As soon as the first row is added to the node’s child level (or the last row removed), the node’s visibility should be updated.

This introduces a dependency from the node on its child nodes. In order to accommodate this, TreeModelFilter must make sure the necessary signals are received from the child model. This is achieved by building, for all nodes which are exposed as visible nodes to TreeModelFilter’s clients, the child level (if any) and take a reference on the first node in this level. Furthermore, for every row-inserted, row-changed or row-deleted signal (also these which were not handled because the node was not cached), TreeModelFilter will check if the visibility state of any parent node has changed.

Beware, however, that this explicit support is limited to these two cases. For example, if you want a node to be visible only if two nodes in a child’s child level (2 levels deeper) are visible, you are on your own. In this case, either rely on TreeStore to emit all signals because it does not implement reference counting, or for models that do implement reference counting, obtain references on these child levels yourself.

Implements

TreeModelFilterExt, glib::ObjectExt, TreeDragSourceExt, TreeModelExt

Implementations

Trait Implementations

Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more
Formats the value using the given formatter. Read more
Feeds this value into the given Hasher. Read more
Feeds a slice of this type into the given Hasher. Read more
This method returns an Ordering between self and other. Read more
Compares and returns the maximum of two values. Read more
Compares and returns the minimum of two values. Read more
Restrict a value to a certain interval. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
Returns the type identifier of Self.

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more
Upcasts an object to a superclass or interface T. Read more
Upcasts an object to a reference of its superclass or interface T. Read more
Tries to downcast to a subclass or interface implementor T. Read more
Tries to downcast to a reference of its subclass or interface implementor T. Read more
Tries to cast to an object of type T. This handles upcasting, downcasting and casting between interface and interface implementors. All checks are performed at runtime, while downcast and upcast will do many checks at compile-time already. Read more
Tries to cast to reference to an object of type T. This handles upcasting, downcasting and casting between interface and interface implementors. All checks are performed at runtime, while downcast and upcast will do many checks at compile-time already. Read more
Casts to T unconditionally. Read more
Casts to &T unconditionally. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Returns true if the object is an instance of (can be cast to) T.
Returns the type of the object.
Returns the ObjectClass of the object. Read more
Returns the class of the object.
Returns the class of the object in the given type T. Read more
Returns the interface T of the object. Read more
Sets the property property_name of the object to value value. Read more
Sets the property property_name of the object to value value. Read more
Sets multiple properties of the object at once. Read more
Sets multiple properties of the object at once. Read more
Gets the property property_name of the object and cast it to the type V. Read more
Gets the property property_name of the object. Read more
Check if the object has a property property_name of the given type_. Read more
Get the type of the property property_name of this object. Read more
Get the ParamSpec of the property property_name of this object.
Return all ParamSpec of the properties of this object.
Freeze all property notifications until the return guard object is dropped. Read more
Set arbitrary data on this object with the given key. Read more
Return previously set arbitrary data of this object with the given key. Read more
Retrieve previously set arbitrary data of this object with the given key. Read more
Set arbitrary data on this object with the given key. Read more
Return previously set arbitrary data of this object with the given key. Read more
Retrieve previously set arbitrary data of this object with the given key. Read more
Block a given signal handler. Read more
Unblock a given signal handler.
Stop emission of the currently emitted signal.
Stop emission of the currently emitted signal by the (possibly detailed) signal name.
Connect to the signal signal_name on this object. Read more
Connect to the signal signal_id on this object. Read more
Connect to the signal signal_name on this object. Read more
Connect to the signal signal_id on this object. Read more
Connect to the signal signal_name on this object. Read more
Connect to the signal signal_id on this object. Read more
Connect a closure to the signal signal_name on this object. Read more
Connect a closure to the signal signal_id on this object. Read more
Limits the lifetime of closure to the lifetime of the object. When the object’s reference count drops to zero, the closure will be invalidated. An invalidated closure will ignore any calls to invoke_with_values, or invoke when using Rust closures. Read more
Emit signal by signal id. Read more
Same as Self::emit but takes Value for the arguments.
Emit signal by its name. Read more
Emit signal by its name. Read more
Emit signal by its name with details. Read more
Emit signal by its name with details. Read more
Emit signal by signal id with details. Read more
Emit signal by signal id with details. Read more
Disconnect a previously connected signal handler.
Connect to the notify signal of the object. Read more
Connect to the notify signal of the object. Read more
Connect to the notify signal of the object. Read more
Notify that the given property has changed its value. Read more
Notify that the given property has changed its value. Read more
Downgrade this object to a weak reference.
Add a callback to be notified when the Object is disposed.
Add a callback to be notified when the Object is disposed. Read more
Bind property source_property on this object to the target_property on the target object. Read more
Returns the strong reference count of this object.
Ensures that the type has been registered with the type system.
The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
Converts the given value to a String. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.