`#[repr(transparent)]pub struct Matrix { /* private fields */ }`

## Expand description

A `Matrix`

specifies a transformation between user-space
and device coordinates.

The transformation is given by

```
x_device = x_user * matrix->xx + y_user * matrix->xy + matrix->x0;
y_device = x_user * matrix->yx + y_user * matrix->yy + matrix->y0;
```

## Implementations

source### impl Matrix

### impl Matrix

source#### pub fn concat(&mut self, new_matrix: &Matrix)

#### pub fn concat(&mut self, new_matrix: &Matrix)

Changes the transformation represented by @self to be the transformation given by first applying transformation given by @new_matrix then applying the original transformation.

`new_matrix`

a `Matrix`

source#### pub fn font_scale_factor(&self) -> f64

#### pub fn font_scale_factor(&self) -> f64

Returns the scale factor of a matrix on the height of the font.

That is, the scale factor in the direction perpendicular to the
vector that the X coordinate is mapped to. If the scale in the X
coordinate is needed as well, use `font_scale_factors()`

.

##### Returns

the scale factor of @self on the height of the font,
or 1.0 if @self is `None`

.

source#### pub fn font_scale_factors(&self) -> (f64, f64)

#### pub fn font_scale_factors(&self) -> (f64, f64)

Calculates the scale factor of a matrix on the width and height of the font.

That is, @xscale is the scale factor in the direction of the X coordinate, and @yscale is the scale factor in the direction perpendicular to the vector that the X coordinate is mapped to.

Note that output numbers will always be non-negative.

##### Returns

`xscale`

output scale factor in the x direction

`yscale`

output scale factor perpendicular to the x direction

source#### pub fn slant_ratio(&self) -> f64

Available on **crate feature **`v1_50`

only.

#### pub fn slant_ratio(&self) -> f64

**crate feature**only.

`v1_50`

Gets the slant ratio of a matrix.

For a simple shear matrix in the form:

```
1 λ
0 1
```

this is simply λ.

##### Returns

the slant ratio of @self

source#### pub fn rotate(&mut self, degrees: f64)

#### pub fn rotate(&mut self, degrees: f64)

Changes the transformation represented by @self to be the transformation given by first rotating by @degrees degrees counter-clockwise then applying the original transformation.

`degrees`

degrees to rotate counter-clockwise

source#### pub fn transform_distance(&self, dx: &mut f64, dy: &mut f64)

#### pub fn transform_distance(&self, dx: &mut f64, dy: &mut f64)

Transforms the distance vector (@dx,@dy) by @self.

This is similar to `transform_point()`

,
except that the translation components of the transformation
are ignored. The calculation of the returned vector is as follows:

```
dx2 = dx1 * xx + dy1 * xy;
dy2 = dx1 * yx + dy1 * yy;
```

Affine transformations are position invariant, so the same vector always transforms to the same vector. If (@x1,@y1) transforms to (@x2,@y2) then (@x1+@dx1,@y1+@dy1) will transform to (@x1+@dx2,@y1+@dy2) for all values of @x1 and @x2.

`dx`

in/out X component of a distance vector

`dy`

in/out Y component of a distance vector

source#### pub fn transform_point(&self, x: &mut f64, y: &mut f64)

#### pub fn transform_point(&self, x: &mut f64, y: &mut f64)

source### impl Matrix

### impl Matrix

#### pub fn new(xx: f64, xy: f64, yx: f64, yy: f64, x0: f64, y0: f64) -> Self

source#### pub fn transform_pixel_rectangle(&self, rect: &mut Rectangle)

#### pub fn transform_pixel_rectangle(&self, rect: &mut Rectangle)

First transforms the @rect using @self, then calculates the bounding box of the transformed rectangle.

This function is useful for example when you want to draw a rotated @PangoLayout to an image buffer, and want to know how large the image should be and how much you should shift the layout when rendering.

For better accuracy, you should use `transform_rectangle()`

on original rectangle in Pango units and convert to pixels afterward
using `extents_to_pixels()`

’s first argument.

`rect`

in/out bounding box in device units

source#### pub fn transform_rectangle(&self, rect: &mut Rectangle)

#### pub fn transform_rectangle(&self, rect: &mut Rectangle)

First transforms @rect using @self, then calculates the bounding box of the transformed rectangle.

This function is useful for example when you want to draw a rotated @PangoLayout to an image buffer, and want to know how large the image should be and how much you should shift the layout when rendering.

If you have a rectangle in device units (pixels), use
`transform_pixel_rectangle()`

.

If you have the rectangle in Pango units and want to convert to transformed pixel bounding box, it is more accurate to transform it first (using this function) and pass the result to pango_extents_to_pixels(), first argument, for an inclusive rounded rectangle. However, there are valid reasons that you may want to convert to pixels first and then transform, for example when the transformed coordinates may overflow in Pango units (large matrix translation for example).

`rect`

in/out bounding box in Pango units

#### pub fn xx(&self) -> f64

#### pub fn xy(&self) -> f64

#### pub fn yx(&self) -> f64

#### pub fn yy(&self) -> f64

#### pub fn x0(&self) -> f64

#### pub fn y0(&self) -> f64

## Trait Implementations

source### impl StaticType for Matrix

### impl StaticType for Matrix

source#### fn static_type() -> Type

#### fn static_type() -> Type

`Self`

.### impl Copy for Matrix

## Auto Trait Implementations

### impl RefUnwindSafe for Matrix

### impl Send for Matrix

### impl Sync for Matrix

### impl Unpin for Matrix

### impl UnwindSafe for Matrix

## Blanket Implementations

source### impl<T> BorrowMut<T> for Twhere

T: ?Sized,

### impl<T> BorrowMut<T> for Twhere

T: ?Sized,

const: unstable · source#### fn borrow_mut(&mut self) -> &mut T

#### fn borrow_mut(&mut self) -> &mut T

source### impl<T> StaticTypeExt for Twhere

T: StaticType,

### impl<T> StaticTypeExt for Twhere

T: StaticType,

source#### fn ensure_type()

#### fn ensure_type()

source### impl<T> ToClosureReturnValue for Twhere

T: ToValue,

### impl<T> ToClosureReturnValue for Twhere

T: ToValue,

#### fn to_closure_return_value(&self) -> Option<Value>

source### impl<T> ToSendValue for Twhere

T: Send + ToValue + ?Sized,

### impl<T> ToSendValue for Twhere

T: Send + ToValue + ?Sized,

source#### fn to_send_value(&self) -> SendValue

#### fn to_send_value(&self) -> SendValue

`SendValue`

clone of `self`

.