1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
// This file was generated by gir (https://github.com/gtk-rs/gir)
// from gir-files (https://github.com/gtk-rs/gir-files.git)
// DO NOT EDIT
use crate::TransformCategory;
use glib::translate::*;
use std::fmt;
use std::mem;
glib::wrapper! {
/// [`Transform`][crate::Transform] is an object to describe transform matrices.
///
/// Unlike [`graphene::Matrix`][crate::graphene::Matrix], [`Transform`][crate::Transform] retains the steps in how
/// a transform was constructed, and allows inspecting them. It is modeled
/// after the way CSS describes transforms.
///
/// [`Transform`][crate::Transform] objects are immutable and cannot be changed after creation.
/// This means code can safely expose them as properties of objects without
/// having to worry about others changing them.
#[derive(Debug, PartialOrd, Ord, Hash)]
pub struct Transform(Shared<ffi::GskTransform>);
match fn {
ref => |ptr| ffi::gsk_transform_ref(ptr),
unref => |ptr| ffi::gsk_transform_unref(ptr),
type_ => || ffi::gsk_transform_get_type(),
}
}
impl Transform {
#[doc(alias = "gsk_transform_new")]
pub fn new() -> Transform {
assert_initialized_main_thread!();
unsafe { from_glib_full(ffi::gsk_transform_new()) }
}
#[doc(alias = "gsk_transform_equal")]
fn equal(&self, second: &Transform) -> bool {
unsafe {
from_glib(ffi::gsk_transform_equal(
self.to_glib_none().0,
second.to_glib_none().0,
))
}
}
/// Returns the category this transform belongs to.
///
/// # Returns
///
/// The category of the transform
#[doc(alias = "gsk_transform_get_category")]
#[doc(alias = "get_category")]
pub fn category(&self) -> TransformCategory {
unsafe { from_glib(ffi::gsk_transform_get_category(self.to_glib_none().0)) }
}
/// Inverts the given transform.
///
/// If @self is not invertible, [`None`] is returned.
/// Note that inverting [`None`] also returns [`None`], which is
/// the correct inverse of [`None`]. If you need to differentiate
/// between those cases, you should check @self is not [`None`]
/// before calling this function.
///
/// # Returns
///
/// The inverted transform
#[doc(alias = "gsk_transform_invert")]
#[must_use]
pub fn invert(&self) -> Option<Transform> {
unsafe { from_glib_full(ffi::gsk_transform_invert(self.to_glib_full())) }
}
/// Multiplies @self with the given @matrix.
/// ## `matrix`
/// the matrix to multiply @self with
///
/// # Returns
///
/// The new transform
#[doc(alias = "gsk_transform_matrix")]
#[must_use]
pub fn matrix(&self, matrix: &graphene::Matrix) -> Transform {
unsafe {
from_glib_full(ffi::gsk_transform_matrix(
self.to_glib_full(),
matrix.to_glib_none().0,
))
}
}
/// Applies a perspective projection transform.
///
/// This transform scales points in X and Y based on their Z value,
/// scaling points with positive Z values away from the origin, and
/// those with negative Z values towards the origin. Points
/// on the z=0 plane are unchanged.
/// ## `depth`
/// distance of the z=0 plane. Lower values give a more
/// flattened pyramid and therefore a more pronounced
/// perspective effect.
///
/// # Returns
///
/// The new transform
#[doc(alias = "gsk_transform_perspective")]
#[must_use]
pub fn perspective(&self, depth: f32) -> Transform {
unsafe { from_glib_full(ffi::gsk_transform_perspective(self.to_glib_full(), depth)) }
}
/// Rotates @self @angle degrees in 2D - or in 3D-speak, around the z axis.
/// ## `angle`
/// the rotation angle, in degrees (clockwise)
///
/// # Returns
///
/// The new transform
#[doc(alias = "gsk_transform_rotate")]
#[must_use]
pub fn rotate(&self, angle: f32) -> Option<Transform> {
unsafe { from_glib_full(ffi::gsk_transform_rotate(self.to_glib_full(), angle)) }
}
/// Rotates @self @angle degrees around @axis.
///
/// For a rotation in 2D space, use [`rotate()`][Self::rotate()]
/// ## `angle`
/// the rotation angle, in degrees (clockwise)
/// ## `axis`
/// The rotation axis
///
/// # Returns
///
/// The new transform
#[doc(alias = "gsk_transform_rotate_3d")]
#[must_use]
pub fn rotate_3d(&self, angle: f32, axis: &graphene::Vec3) -> Option<Transform> {
unsafe {
from_glib_full(ffi::gsk_transform_rotate_3d(
self.to_glib_full(),
angle,
axis.to_glib_none().0,
))
}
}
/// Scales @self in 2-dimensional space by the given factors.
///
/// Use [`scale_3d()`][Self::scale_3d()] to scale in all 3 dimensions.
/// ## `factor_x`
/// scaling factor on the X axis
/// ## `factor_y`
/// scaling factor on the Y axis
///
/// # Returns
///
/// The new transform
#[doc(alias = "gsk_transform_scale")]
#[must_use]
pub fn scale(&self, factor_x: f32, factor_y: f32) -> Option<Transform> {
unsafe {
from_glib_full(ffi::gsk_transform_scale(
self.to_glib_full(),
factor_x,
factor_y,
))
}
}
/// Scales @self by the given factors.
/// ## `factor_x`
/// scaling factor on the X axis
/// ## `factor_y`
/// scaling factor on the Y axis
/// ## `factor_z`
/// scaling factor on the Z axis
///
/// # Returns
///
/// The new transform
#[doc(alias = "gsk_transform_scale_3d")]
#[must_use]
pub fn scale_3d(&self, factor_x: f32, factor_y: f32, factor_z: f32) -> Option<Transform> {
unsafe {
from_glib_full(ffi::gsk_transform_scale_3d(
self.to_glib_full(),
factor_x,
factor_y,
factor_z,
))
}
}
/// Applies a skew transform.
/// ## `skew_x`
/// skew factor, in degrees, on the X axis
/// ## `skew_y`
/// skew factor, in degrees, on the Y axis
///
/// # Returns
///
/// The new transform
#[cfg(any(feature = "v4_6", feature = "dox"))]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v4_6")))]
#[doc(alias = "gsk_transform_skew")]
#[must_use]
pub fn skew(&self, skew_x: f32, skew_y: f32) -> Option<Transform> {
unsafe { from_glib_full(ffi::gsk_transform_skew(self.to_glib_full(), skew_x, skew_y)) }
}
/// Converts a [`Transform`][crate::Transform] to a 2D transformation matrix.
///
/// @self must be a 2D transformation. If you are not
/// sure, use gsk_transform_get_category() >=
/// [`TransformCategory::_2d`][crate::TransformCategory::_2d] to check.
///
/// The returned values have the following layout:
///
/// ```text
/// | xx yx | | a b 0 |
/// | xy yy | = | c d 0 |
/// | dx dy | | tx ty 1 |
/// ```
///
/// This function can be used to convert between a [`Transform`][crate::Transform]
/// and a matrix type from other 2D drawing libraries, in particular
/// Cairo.
///
/// # Returns
///
///
/// ## `out_xx`
/// return location for the xx member
///
/// ## `out_yx`
/// return location for the yx member
///
/// ## `out_xy`
/// return location for the xy member
///
/// ## `out_yy`
/// return location for the yy member
///
/// ## `out_dx`
/// return location for the x0 member
///
/// ## `out_dy`
/// return location for the y0 member
#[doc(alias = "gsk_transform_to_2d")]
pub fn to_2d(&self) -> (f32, f32, f32, f32, f32, f32) {
unsafe {
let mut out_xx = mem::MaybeUninit::uninit();
let mut out_yx = mem::MaybeUninit::uninit();
let mut out_xy = mem::MaybeUninit::uninit();
let mut out_yy = mem::MaybeUninit::uninit();
let mut out_dx = mem::MaybeUninit::uninit();
let mut out_dy = mem::MaybeUninit::uninit();
ffi::gsk_transform_to_2d(
self.to_glib_none().0,
out_xx.as_mut_ptr(),
out_yx.as_mut_ptr(),
out_xy.as_mut_ptr(),
out_yy.as_mut_ptr(),
out_dx.as_mut_ptr(),
out_dy.as_mut_ptr(),
);
(
out_xx.assume_init(),
out_yx.assume_init(),
out_xy.assume_init(),
out_yy.assume_init(),
out_dx.assume_init(),
out_dy.assume_init(),
)
}
}
/// Converts a [`Transform`][crate::Transform] to 2D transformation factors.
///
/// To recreate an equivalent transform from the factors returned
/// by this function, use
///
/// gsk_transform_skew (
/// gsk_transform_scale (
/// gsk_transform_rotate (
/// gsk_transform_translate (NULL, &GRAPHENE_POINT_T (dx, dy)),
/// angle),
/// scale_x, scale_y),
/// skew_x, skew_y)
///
/// @self must be a 2D transformation. If you are not sure, use
///
/// gsk_transform_get_category() >= [`TransformCategory::_2d`][crate::TransformCategory::_2d]
///
/// to check.
///
/// # Returns
///
///
/// ## `out_skew_x`
/// return location for the skew factor
/// in the x direction
///
/// ## `out_skew_y`
/// return location for the skew factor
/// in the y direction
///
/// ## `out_scale_x`
/// return location for the scale
/// factor in the x direction
///
/// ## `out_scale_y`
/// return location for the scale
/// factor in the y direction
///
/// ## `out_angle`
/// return location for the rotation angle
///
/// ## `out_dx`
/// return location for the translation
/// in the x direction
///
/// ## `out_dy`
/// return location for the translation
/// in the y direction
#[cfg(any(feature = "v4_6", feature = "dox"))]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v4_6")))]
#[doc(alias = "gsk_transform_to_2d_components")]
pub fn to_2d_components(&self) -> (f32, f32, f32, f32, f32, f32, f32) {
unsafe {
let mut out_skew_x = mem::MaybeUninit::uninit();
let mut out_skew_y = mem::MaybeUninit::uninit();
let mut out_scale_x = mem::MaybeUninit::uninit();
let mut out_scale_y = mem::MaybeUninit::uninit();
let mut out_angle = mem::MaybeUninit::uninit();
let mut out_dx = mem::MaybeUninit::uninit();
let mut out_dy = mem::MaybeUninit::uninit();
ffi::gsk_transform_to_2d_components(
self.to_glib_none().0,
out_skew_x.as_mut_ptr(),
out_skew_y.as_mut_ptr(),
out_scale_x.as_mut_ptr(),
out_scale_y.as_mut_ptr(),
out_angle.as_mut_ptr(),
out_dx.as_mut_ptr(),
out_dy.as_mut_ptr(),
);
(
out_skew_x.assume_init(),
out_skew_y.assume_init(),
out_scale_x.assume_init(),
out_scale_y.assume_init(),
out_angle.assume_init(),
out_dx.assume_init(),
out_dy.assume_init(),
)
}
}
/// Converts a [`Transform`][crate::Transform] to 2D affine transformation factors.
///
/// To recreate an equivalent transform from the factors returned
/// by this function, use
///
/// gsk_transform_scale (gsk_transform_translate (NULL,
/// &GRAPHENE_POINT_T (dx, dy)),
/// sx, sy)
///
/// @self must be a 2D affine transformation. If you are not
/// sure, use
///
/// gsk_transform_get_category() >= [`TransformCategory::_2dAffine`][crate::TransformCategory::_2dAffine]
///
/// to check.
///
/// # Returns
///
///
/// ## `out_scale_x`
/// return location for the scale
/// factor in the x direction
///
/// ## `out_scale_y`
/// return location for the scale
/// factor in the y direction
///
/// ## `out_dx`
/// return location for the translation
/// in the x direction
///
/// ## `out_dy`
/// return location for the translation
/// in the y direction
#[doc(alias = "gsk_transform_to_affine")]
pub fn to_affine(&self) -> (f32, f32, f32, f32) {
unsafe {
let mut out_scale_x = mem::MaybeUninit::uninit();
let mut out_scale_y = mem::MaybeUninit::uninit();
let mut out_dx = mem::MaybeUninit::uninit();
let mut out_dy = mem::MaybeUninit::uninit();
ffi::gsk_transform_to_affine(
self.to_glib_none().0,
out_scale_x.as_mut_ptr(),
out_scale_y.as_mut_ptr(),
out_dx.as_mut_ptr(),
out_dy.as_mut_ptr(),
);
(
out_scale_x.assume_init(),
out_scale_y.assume_init(),
out_dx.assume_init(),
out_dy.assume_init(),
)
}
}
/// Computes the actual value of @self and stores it in @out_matrix.
///
/// The previous value of @out_matrix will be ignored.
///
/// # Returns
///
///
/// ## `out_matrix`
/// The matrix to set
#[doc(alias = "gsk_transform_to_matrix")]
pub fn to_matrix(&self) -> graphene::Matrix {
unsafe {
let mut out_matrix = graphene::Matrix::uninitialized();
ffi::gsk_transform_to_matrix(self.to_glib_none().0, out_matrix.to_glib_none_mut().0);
out_matrix
}
}
/// Converts a matrix into a string that is suitable for printing.
///
/// The resulting string can be parsed with [`parse()`][Self::parse()].
///
/// This is a wrapper around `Gsk::Transform::print()`.
///
/// # Returns
///
/// A new string for @self
#[doc(alias = "gsk_transform_to_string")]
#[doc(alias = "to_string")]
pub fn to_str(&self) -> glib::GString {
unsafe { from_glib_full(ffi::gsk_transform_to_string(self.to_glib_none().0)) }
}
/// Converts a [`Transform`][crate::Transform] to a translation operation.
///
/// @self must be a 2D transformation. If you are not
/// sure, use
///
/// gsk_transform_get_category() >= [`TransformCategory::_2dTranslate`][crate::TransformCategory::_2dTranslate]
///
/// to check.
///
/// # Returns
///
///
/// ## `out_dx`
/// return location for the translation
/// in the x direction
///
/// ## `out_dy`
/// return location for the translation
/// in the y direction
#[doc(alias = "gsk_transform_to_translate")]
pub fn to_translate(&self) -> (f32, f32) {
unsafe {
let mut out_dx = mem::MaybeUninit::uninit();
let mut out_dy = mem::MaybeUninit::uninit();
ffi::gsk_transform_to_translate(
self.to_glib_none().0,
out_dx.as_mut_ptr(),
out_dy.as_mut_ptr(),
);
(out_dx.assume_init(), out_dy.assume_init())
}
}
/// Applies all the operations from @other to @self.
/// ## `other`
/// Transform to apply
///
/// # Returns
///
/// The new transform
#[doc(alias = "gsk_transform_transform")]
#[must_use]
pub fn transform(&self, other: Option<&Transform>) -> Option<Transform> {
unsafe {
from_glib_full(ffi::gsk_transform_transform(
self.to_glib_full(),
other.to_glib_none().0,
))
}
}
/// Transforms a [`graphene::Rect`][crate::graphene::Rect] using the given transform @self.
///
/// The result is the bounding box containing the coplanar quad.
/// ## `rect`
/// a [`graphene::Rect`][crate::graphene::Rect]
///
/// # Returns
///
///
/// ## `out_rect`
/// return location for the bounds
/// of the transformed rectangle
#[doc(alias = "gsk_transform_transform_bounds")]
pub fn transform_bounds(&self, rect: &graphene::Rect) -> graphene::Rect {
unsafe {
let mut out_rect = graphene::Rect::uninitialized();
ffi::gsk_transform_transform_bounds(
self.to_glib_none().0,
rect.to_glib_none().0,
out_rect.to_glib_none_mut().0,
);
out_rect
}
}
/// Transforms a [`graphene::Point`][crate::graphene::Point] using the given transform @self.
/// ## `point`
/// a [`graphene::Point`][crate::graphene::Point]
///
/// # Returns
///
///
/// ## `out_point`
/// return location for
/// the transformed point
#[doc(alias = "gsk_transform_transform_point")]
pub fn transform_point(&self, point: &graphene::Point) -> graphene::Point {
unsafe {
let mut out_point = graphene::Point::uninitialized();
ffi::gsk_transform_transform_point(
self.to_glib_none().0,
point.to_glib_none().0,
out_point.to_glib_none_mut().0,
);
out_point
}
}
/// Translates @self in 2-dimensional space by @point.
/// ## `point`
/// the point to translate the transform by
///
/// # Returns
///
/// The new transform
#[doc(alias = "gsk_transform_translate")]
#[must_use]
pub fn translate(&self, point: &graphene::Point) -> Option<Transform> {
unsafe {
from_glib_full(ffi::gsk_transform_translate(
self.to_glib_full(),
point.to_glib_none().0,
))
}
}
/// Translates @self by @point.
/// ## `point`
/// the point to translate the transform by
///
/// # Returns
///
/// The new transform
#[doc(alias = "gsk_transform_translate_3d")]
#[must_use]
pub fn translate_3d(&self, point: &graphene::Point3D) -> Option<Transform> {
unsafe {
from_glib_full(ffi::gsk_transform_translate_3d(
self.to_glib_full(),
point.to_glib_none().0,
))
}
}
}
impl Default for Transform {
fn default() -> Self {
Self::new()
}
}
impl PartialEq for Transform {
#[inline]
fn eq(&self, other: &Self) -> bool {
self.equal(other)
}
}
impl Eq for Transform {}
impl fmt::Display for Transform {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str(&self.to_str())
}
}