Struct gio::Application [−][src]
pub struct Application(_);
Expand description
A Application
is the foundation of an application. It wraps some
low-level platform-specific services and is intended to act as the
foundation for higher-level application classes such as
GtkApplication
or MxApplication
. In general, you should not use
this class outside of a higher level framework.
GApplication provides convenient life cycle management by maintaining
a “use count” for the primary application instance. The use count can
be changed using ApplicationExt::hold()
and ApplicationExt::release()
. If
it drops to zero, the application exits. Higher-level classes such as
GtkApplication
employ the use count to ensure that the application
stays alive as long as it has any opened windows.
Another feature that GApplication (optionally) provides is process uniqueness. Applications can make use of this functionality by providing a unique application ID. If given, only one application with this ID can be running at a time per session. The session concept is platform-dependent, but corresponds roughly to a graphical desktop login. When your application is launched again, its arguments are passed through platform communication to the already running program. The already running instance of the program is called the “primary instance”; for non-unique applications this is always the current instance. On Linux, the D-Bus session bus is used for communication.
The use of Application
differs from some other commonly-used
uniqueness libraries (such as libunique) in important ways. The
application is not expected to manually register itself and check
if it is the primary instance. Instead, the main()
function of a
Application
should do very little more than instantiating the
application instance, possibly connecting signal handlers, then
calling ApplicationExtManual::run()
. All checks for uniqueness are done
internally. If the application is the primary instance then the
startup signal is emitted and the mainloop runs. If the application
is not the primary instance then a signal is sent to the primary
instance and ApplicationExtManual::run()
promptly returns. See the code
examples below.
If used, the expected form of an application identifier is the same as
that of of a
D-Bus well-known bus name.
Examples include: com.example.MyApp
, org.example.internal_apps.Calculator
,
org._7_zip.Archiver
.
For details on valid application identifiers, see id_is_valid()
.
On Linux, the application identifier is claimed as a well-known bus name
on the user’s session bus. This means that the uniqueness of your
application is scoped to the current session. It also means that your
application may provide additional services (through registration of other
object paths) at that bus name. The registration of these object paths
should be done with the shared GDBus session bus. Note that due to the
internal architecture of GDBus, method calls can be dispatched at any time
(even if a main loop is not running). For this reason, you must ensure that
any object paths that you wish to register are registered before Application
attempts to acquire the bus name of your application (which happens in
ApplicationExt::register()
). Unfortunately, this means that you cannot use
ApplicationExt::is_remote()
to decide if you want to register object paths.
GApplication also implements the ActionGroup
and ActionMap
interfaces and lets you easily export actions by adding them with
ActionMapExt::add_action()
. When invoking an action by calling
ActionGroupExt::activate_action()
on the application, it is always
invoked in the primary instance. The actions are also exported on
the session bus, and GIO provides the DBusActionGroup
wrapper to
conveniently access them remotely. GIO provides a DBusMenuModel
wrapper
for remote access to exported GMenuModels
.
There is a number of different entry points into a GApplication:
-
via ‘Activate’ (i.e. just starting the application)
-
via ‘Open’ (i.e. opening some files)
-
by handling a command-line
-
via activating an action
The signal::Application::startup
signal lets you handle the application
initialization for all of these in a single place.
Regardless of which of these entry points is used to start the
application, GApplication passes some ‘platform data’ from the
launching instance to the primary instance, in the form of a
glib::Variant
dictionary mapping strings to variants. To use platform
data, override the before_emit
or after_emit
virtual functions
in your Application
subclass. When dealing with
ApplicationCommandLine
objects, the platform data is
directly available via ApplicationCommandLineExt::cwd()
,
ApplicationCommandLineExt::environ()
and
ApplicationCommandLineExt::platform_data()
.
As the name indicates, the platform data may vary depending on the
operating system, but it always includes the current directory (key
“cwd”), and optionally the environment (ie the set of environment
variables and their values) of the calling process (key “environ”).
The environment is only added to the platform data if the
ApplicationFlags::SEND_ENVIRONMENT
flag is set. Application
subclasses
can add their own platform data by overriding the add_platform_data
virtual function. For instance, GtkApplication
adds startup notification
data in this way.
To parse commandline arguments you may handle the
signal::Application::command-line
signal or override the local_command_line()
vfunc, to parse them in either the primary instance or the local instance,
respectively.
For an example of opening files with a GApplication, see gapplication-example-open.c.
For an example of using actions with GApplication, see gapplication-example-actions.c.
For an example of using extra D-Bus hooks with GApplication, see gapplication-example-dbushooks.c.
Implements
ApplicationExt
, glib::ObjectExt
, ActionGroupExt
, ActionMapExt
, ApplicationExtManual
Implementations
Creates a new Application
instance.
If non-None
, the application id must be valid. See
id_is_valid()
.
If no application ID is given then some features of Application
(most notably application uniqueness) will be disabled.
application_id
the application id
flags
the application flags
Returns
a new Application
instance
Creates a new builder-pattern struct instance to construct Application
objects.
This method returns an instance of ApplicationBuilder
which can be used to create Application
objects.
Returns the default Application
instance for this process.
Normally there is only one Application
per process and it becomes
the default when it is created. You can exercise more control over
this by using ApplicationExt::set_default()
.
If there is no default application then None
is returned.
Returns
the default application for this process, or None
Checks if application_id
is a valid application identifier.
A valid ID is required for calls to new()
and
ApplicationExt::set_application_id()
.
Application identifiers follow the same format as D-Bus well-known bus names. For convenience, the restrictions on application identifiers are reproduced here:
-
Application identifiers are composed of 1 or more elements separated by a period (
.
) character. All elements must contain at least one character. -
Each element must only contain the ASCII characters
[A-Z][a-z][0-9]_-
, with-
discouraged in new application identifiers. Each element must not begin with a digit. -
Application identifiers must contain at least one
.
(period) character (and thus at least two elements). -
Application identifiers must not begin with a
.
(period) character. -
Application identifiers must not exceed 255 characters.
Note that the hyphen (-
) character is allowed in application identifiers,
but is problematic or not allowed in various specifications and APIs that
refer to D-Bus, such as
Flatpak application IDs,
the
DBusActivatable
interface in the Desktop Entry Specification,
and the convention that an application’s “main” interface and object path
resemble its application identifier and bus name. To avoid situations that
require special-case handling, it is recommended that new application
identifiers consistently replace hyphens with underscores.
Like D-Bus interface names, application identifiers should start with the reversed DNS domain name of the author of the interface (in lower-case), and it is conventional for the rest of the application identifier to consist of words run together, with initial capital letters.
As with D-Bus interface names, if the author’s DNS domain name contains
hyphen/minus characters they should be replaced by underscores, and if it
contains leading digits they should be escaped by prepending an underscore.
For example, if the owner of 7-zip.org used an application identifier for an
archiving application, it might be named org._7_zip.Archiver
.
application_id
a potential application identifier
Returns
true
if application_id
is valid
Trait Implementations
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
Returns the type identifier of Self
.
Auto Trait Implementations
impl RefUnwindSafe for Application
impl !Send for Application
impl !Sync for Application
impl Unpin for Application
impl UnwindSafe for Application
Blanket Implementations
Mutably borrows from an owned value. Read more
Upcasts an object to a superclass or interface T
. Read more
Upcasts an object to a reference of its superclass or interface T
. Read more
Tries to downcast to a subclass or interface implementor T
. Read more
Tries to downcast to a reference of its subclass or interface implementor T
. Read more
Tries to cast to an object of type T
. This handles upcasting, downcasting
and casting between interface and interface implementors. All checks are performed at
runtime, while downcast
and upcast
will do many checks at compile-time already. Read more
Tries to cast to reference to an object of type T
. This handles upcasting, downcasting
and casting between interface and interface implementors. All checks are performed at
runtime, while downcast
and upcast
will do many checks at compile-time already. Read more
Casts to T
unconditionally. Read more
Casts to &T
unconditionally. Read more
Returns true
if the object is an instance of (can be cast to) T
.
pub fn set_properties_from_value(
&self,
property_values: &[(&str, Value)]
) -> Result<(), BoolError>
pub fn set_property<'a, N, V>(
&self,
property_name: N,
value: V
) -> Result<(), BoolError> where
V: ToValue,
N: Into<&'a str>,
pub fn set_property_from_value<'a, N>(
&self,
property_name: N,
value: &Value
) -> Result<(), BoolError> where
N: Into<&'a str>,
Safety Read more
Safety Read more
Safety Read more
Safety Read more
pub fn connect_notify<F>(&self, name: Option<&str>, f: F) -> SignalHandlerId where
F: 'static + Fn(&T, &ParamSpec) + Send + Sync,
pub fn connect_notify_local<F>(
&self,
name: Option<&str>,
f: F
) -> SignalHandlerId where
F: 'static + Fn(&T, &ParamSpec),
pub unsafe fn connect_notify_unsafe<F>(
&self,
name: Option<&str>,
f: F
) -> SignalHandlerId where
F: Fn(&T, &ParamSpec),
pub fn has_property<'a, N>(&self, property_name: N, type_: Option<Type>) -> bool where
N: Into<&'a str>,
pub fn find_property<'a, N>(&self, property_name: N) -> Option<ParamSpec> where
N: Into<&'a str>,
pub fn connect<'a, N, F>(
&self,
signal_name: N,
after: bool,
callback: F
) -> Result<SignalHandlerId, BoolError> where
F: Fn(&[Value]) -> Option<Value> + Send + Sync + 'static,
N: Into<&'a str>,
Same as connect
but takes a SignalId
instead of a signal name.
pub fn connect_local<'a, N, F>(
&self,
signal_name: N,
after: bool,
callback: F
) -> Result<SignalHandlerId, BoolError> where
F: Fn(&[Value]) -> Option<Value> + 'static,
N: Into<&'a str>,
Same as connect_local
but takes a SignalId
instead of a signal name.
pub unsafe fn connect_unsafe<'a, N, F>(
&self,
signal_name: N,
after: bool,
callback: F
) -> Result<SignalHandlerId, BoolError> where
F: Fn(&[Value]) -> Option<Value>,
N: Into<&'a str>,
Same as connect_unsafe
but takes a SignalId
instead of a signal name.
Emit signal by signal id.
Emit signal with details by signal id.
Emit signal by it’s name.
pub fn bind_property<'a, O, N, M>(
&'a self,
source_property: N,
target: &'a O,
target_property: M
) -> BindingBuilder<'a> where
O: ObjectType,
N: Into<&'a str>,
M: Into<&'a str>,
Same as emit
but takes Value
for the arguments.
Same as emit_by_name
but takes Value
for the arguments.
Returns a SendValue
clone of self
.
impl<'a, T, C> FromValueOptional<'a> for T where
C: ValueTypeChecker<Error = ValueTypeMismatchOrNoneError>,
T: FromValue<'a, Checker = C>,