Struct gtk4::Widget

source ·
#[repr(transparent)]
pub struct Widget { /* private fields */ }
Expand description

The base class for all widgets.

Widget is the base class all widgets in GTK derive from. It manages the widget lifecycle, layout, states and style.

Height-for-width Geometry Management

GTK uses a height-for-width (and width-for-height) geometry management system. Height-for-width means that a widget can change how much vertical space it needs, depending on the amount of horizontal space that it is given (and similar for width-for-height). The most common example is a label that reflows to fill up the available width, wraps to fewer lines, and therefore needs less height.

Height-for-width geometry management is implemented in GTK by way of two virtual methods:

  • vfunc::Gtk::Widget::get_request_mode
  • vfunc::Gtk::Widget::measure

There are some important things to keep in mind when implementing height-for-width and when using it in widget implementations.

If you implement a direct Widget subclass that supports height-for-width or width-for-height geometry management for itself or its child widgets, the vfunc::Gtk::Widget::get_request_mode virtual function must be implemented as well and return the widget’s preferred request mode. The default implementation of this virtual function returns SizeRequestMode::ConstantSize, which means that the widget will only ever get -1 passed as the for_size value to its vfunc::Gtk::Widget::measure implementation.

The geometry management system will query a widget hierarchy in only one orientation at a time. When widgets are initially queried for their minimum sizes it is generally done in two initial passes in the SizeRequestMode chosen by the toplevel.

For example, when queried in the normal SizeRequestMode::HeightForWidth mode:

First, the default minimum and natural width for each widget in the interface will be computed using prelude::WidgetExt::measure with an orientation of Orientation::Horizontal and a for_size of -1. Because the preferred widths for each widget depend on the preferred widths of their children, this information propagates up the hierarchy, and finally a minimum and natural width is determined for the entire toplevel. Next, the toplevel will use the minimum width to query for the minimum height contextual to that width using prelude::WidgetExt::measure with an orientation of Orientation::Vertical and a for_size of the just computed width. This will also be a highly recursive operation. The minimum height for the minimum width is normally used to set the minimum size constraint on the toplevel.

After the toplevel window has initially requested its size in both dimensions it can go on to allocate itself a reasonable size (or a size previously specified with GtkWindowExt::set_default_size()). During the recursive allocation process it’s important to note that request cycles will be recursively executed while widgets allocate their children. Each widget, once allocated a size, will go on to first share the space in one orientation among its children and then request each child’s height for its target allocated width or its width for allocated height, depending. In this way a Widget will typically be requested its size a number of times before actually being allocated a size. The size a widget is finally allocated can of course differ from the size it has requested. For this reason, Widget caches a small number of results to avoid re-querying for the same sizes in one allocation cycle.

If a widget does move content around to intelligently use up the allocated size then it must support the request in both SizeRequestModes even if the widget in question only trades sizes in a single orientation.

For instance, a Label that does height-for-width word wrapping will not expect to have vfunc::Gtk::Widget::measure with an orientation of Orientation::Vertical called because that call is specific to a width-for-height request. In this case the label must return the height required for its own minimum possible width. By following this rule any widget that handles height-for-width or width-for-height requests will always be allocated at least enough space to fit its own content.

Here are some examples of how a SizeRequestMode::HeightForWidth widget generally deals with width-for-height requests:

⚠️ The following code is in c ⚠️

static void
foo_widget_measure (GtkWidget      *widget,
                    GtkOrientation  orientation,
                    int             for_size,
                    int            *minimum_size,
                    int            *natural_size,
                    int            *minimum_baseline,
                    int            *natural_baseline)
{
  if (orientation == GTK_ORIENTATION_HORIZONTAL)
    {
      // Calculate minimum and natural width
    }
  else // VERTICAL
    {
      if (i_am_in_height_for_width_mode)
        {
          int min_width, dummy;

          // First, get the minimum width of our widget
          GTK_WIDGET_GET_CLASS (widget)->measure (widget, GTK_ORIENTATION_HORIZONTAL, -1,
                                                  &min_width, &dummy, &dummy, &dummy);

          // Now use the minimum width to retrieve the minimum and natural height to display
          // that width.
          GTK_WIDGET_GET_CLASS (widget)->measure (widget, GTK_ORIENTATION_VERTICAL, min_width,
                                                  minimum_size, natural_size, &dummy, &dummy);
        }
      else
        {
          // ... some widgets do both.
        }
    }
}

Often a widget needs to get its own request during size request or allocation. For example, when computing height it may need to also compute width. Or when deciding how to use an allocation, the widget may need to know its natural size. In these cases, the widget should be careful to call its virtual methods directly, like in the code example above.

It will not work to use the wrapper function WidgetExt::measure() inside your own vfunc::Gtk::Widget::size_allocate implementation. These return a request adjusted by SizeGroup, the widget’s align and expand flags, as well as its CSS style.

If a widget used the wrappers inside its virtual method implementations, then the adjustments (such as widget margins) would be applied twice. GTK therefore does not allow this and will warn if you try to do it.

Of course if you are getting the size request for another widget, such as a child widget, you must use prelude::WidgetExt::measure; otherwise, you would not properly consider widget margins, SizeGroup, and so forth.

GTK also supports baseline vertical alignment of widgets. This means that widgets are positioned such that the typographical baseline of widgets in the same row are aligned. This happens if a widget supports baselines, has a vertical alignment of Align::Baseline, and is inside a widget that supports baselines and has a natural “row” that it aligns to the baseline, or a baseline assigned to it by the grandparent.

Baseline alignment support for a widget is also done by the vfunc::Gtk::Widget::measure virtual function. It allows you to report both a minimum and natural size.

If a widget ends up baseline aligned it will be allocated all the space in the parent as if it was Align::Fill, but the selected baseline can be found via [prelude::WidgetExt::get_allocated_baseline][crate::prelude::WidgetExt::get_allocated_baseline]. If the baseline has a value other than -1 you need to align the widget such that the baseline appears at the position.

GtkWidget as GtkBuildable

The Widget implementation of the Buildable interface supports various custom elements to specify additional aspects of widgets that are not directly expressed as properties.

If the widget uses a LayoutManager, Widget supports a custom <layout> element, used to define layout properties:

<object class="GtkGrid" id="my_grid">
  <child>
    <object class="GtkLabel" id="label1">
      <property name="label">Description</property>
      <layout>
        <property name="column">0</property>
        <property name="row">0</property>
        <property name="row-span">1</property>
        <property name="column-span">1</property>
      </layout>
    </object>
  </child>
  <child>
    <object class="GtkEntry" id="description_entry">
      <layout>
        <property name="column">1</property>
        <property name="row">0</property>
        <property name="row-span">1</property>
        <property name="column-span">1</property>
      </layout>
    </object>
  </child>
</object>

Widget allows style information such as style classes to be associated with widgets, using the custom <style> element:

<object class="GtkButton" id="button1">
  <style>
    <class name="my-special-button-class"/>
    <class name="dark-button"/>
  </style>
</object>

Widget allows defining accessibility information, such as properties, relations, and states, using the custom <accessibility> element:

<object class="GtkButton" id="button1">
  <accessibility>
    <property name="label">Download</property>
    <relation name="labelled-by">label1</relation>
  </accessibility>
</object>

Building composite widgets from template XML

GtkWidget exposes some facilities to automate the procedure of creating composite widgets using “templates”.

To create composite widgets with Builder XML, one must associate the interface description with the widget class at class initialization time using Gtk::WidgetClass::set_template().

The interface description semantics expected in composite template descriptions is slightly different from regular Builder XML.

Unlike regular interface descriptions, Gtk::WidgetClass::set_template() will expect a <template> tag as a direct child of the toplevel <interface> tag. The <template> tag must specify the “class” attribute which must be the type name of the widget. Optionally, the “parent” attribute may be specified to specify the direct parent type of the widget type; this is ignored by Builder but can be used by UI design tools to introspect what kind of properties and internal children exist for a given type when the actual type does not exist.

The XML which is contained inside the <template> tag behaves as if it were added to the <object> tag defining the widget itself. You may set properties on a widget by inserting <property> tags into the <template> tag, and also add <child> tags to add children and extend a widget in the normal way you would with <object> tags.

Additionally, <object> tags can also be added before and after the initial <template> tag in the normal way, allowing one to define auxiliary objects which might be referenced by other widgets declared as children of the <template> tag.

An example of a template definition:

<interface>
  <template class="FooWidget" parent="GtkBox">
    <property name="orientation">horizontal</property>
    <property name="spacing">4</property>
    <child>
      <object class="GtkButton" id="hello_button">
        <property name="label">Hello World</property>
        <signal name="clicked" handler="hello_button_clicked" object="FooWidget" swapped="yes"/>
      </object>
    </child>
    <child>
      <object class="GtkButton" id="goodbye_button">
        <property name="label">Goodbye World</property>
      </object>
    </child>
  </template>
</interface>

Typically, you’ll place the template fragment into a file that is bundled with your project, using GResource. In order to load the template, you need to call Gtk::WidgetClass::set_template_from_resource() from the class initialization of your Widget type:

⚠️ The following code is in c ⚠️

static void
foo_widget_class_init (FooWidgetClass *klass)
{
  // ...

  gtk_widget_class_set_template_from_resource (GTK_WIDGET_CLASS (klass),
                                               "/com/example/ui/foowidget.ui");
}

You will also need to call WidgetExt::init_template() from the instance initialization function:

⚠️ The following code is in c ⚠️

static void
foo_widget_init (FooWidget *self)
{
  gtk_widget_init_template (GTK_WIDGET (self));

  // Initialize the rest of the widget...
}

as well as calling WidgetExt::dispose_template() from the dispose function:

⚠️ The following code is in c ⚠️

static void
foo_widget_dispose (GObject *gobject)
{
  FooWidget *self = FOO_WIDGET (gobject);

  // Dispose objects for which you have a reference...

  // Clear the template children for this widget type
  gtk_widget_dispose_template (GTK_WIDGET (self), FOO_TYPE_WIDGET);

  G_OBJECT_CLASS (foo_widget_parent_class)->dispose (gobject);
}

You can access widgets defined in the template using the [prelude::WidgetExt::get_template_child][crate::prelude::WidgetExt::get_template_child] function, but you will typically declare a pointer in the instance private data structure of your type using the same name as the widget in the template definition, and call Gtk::WidgetClass::bind_template_child_full() (or one of its wrapper macros widget_class_bind_template_child() and widget_class_bind_template_child_private()) with that name, e.g.

⚠️ The following code is in c ⚠️

typedef struct {
  GtkWidget *hello_button;
  GtkWidget *goodbye_button;
} FooWidgetPrivate;

G_DEFINE_TYPE_WITH_PRIVATE (FooWidget, foo_widget, GTK_TYPE_BOX)

static void
foo_widget_dispose (GObject *gobject)
{
  gtk_widget_dispose_template (GTK_WIDGET (gobject), FOO_TYPE_WIDGET);

  G_OBJECT_CLASS (foo_widget_parent_class)->dispose (gobject);
}

static void
foo_widget_class_init (FooWidgetClass *klass)
{
  // ...
  G_OBJECT_CLASS (klass)->dispose = foo_widget_dispose;

  gtk_widget_class_set_template_from_resource (GTK_WIDGET_CLASS (klass),
                                               "/com/example/ui/foowidget.ui");
  gtk_widget_class_bind_template_child_private (GTK_WIDGET_CLASS (klass),
                                                FooWidget, hello_button);
  gtk_widget_class_bind_template_child_private (GTK_WIDGET_CLASS (klass),
                                                FooWidget, goodbye_button);
}

static void
foo_widget_init (FooWidget *widget)
{
  gtk_widget_init_template (GTK_WIDGET (widget));
}

You can also use Gtk::WidgetClass::bind_template_callback_full() (or is wrapper macro widget_class_bind_template_callback()) to connect a signal callback defined in the template with a function visible in the scope of the class, e.g.

⚠️ The following code is in c ⚠️

// the signal handler has the instance and user data swapped
// because of the swapped="yes" attribute in the template XML
static void
hello_button_clicked (FooWidget *self,
                      GtkButton *button)
{
  g_print ("Hello, world!\n");
}

static void
foo_widget_class_init (FooWidgetClass *klass)
{
  // ...
  gtk_widget_class_set_template_from_resource (GTK_WIDGET_CLASS (klass),
                                               "/com/example/ui/foowidget.ui");
  gtk_widget_class_bind_template_callback (GTK_WIDGET_CLASS (klass), hello_button_clicked);
}

This is an Abstract Base Class, you cannot instantiate it.

Implements

WidgetExt, glib::ObjectExt, AccessibleExt, BuildableExt, ConstraintTargetExt, WidgetExtManual, AccessibleExtManual

Implementations§

Obtains the current default reading direction.

See set_default_direction().

Returns

the current default direction.

Sets the default reading direction for widgets.

See WidgetExt::set_direction().

dir

the new default direction. This cannot be TextDirection::None.

Trait Implementations§

Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more
Formats the value using the given formatter. Read more
Feeds this value into the given Hasher. Read more
Feeds a slice of this type into the given Hasher. Read more
Override the virtual methods of this class for the given subclass and do other class initialization. Read more
Instance specific initialization. Read more
This method returns an Ordering between self and other. Read more
Compares and returns the maximum of two values. Read more
Compares and returns the minimum of two values. Read more
Restrict a value to a certain interval. Read more
This method tests for self and other values to be equal, and is used by ==.
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
Returns the type identifier of Self.
source§

impl IsA<Widget> for Entry

Auto Trait Implementations§

Blanket Implementations§

Updates an array of accessible properties. Read more
Updates an array of accessible relations. Read more
Updates an array of accessible states. Read more
Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more
Upcasts an object to a superclass or interface T. Read more
Upcasts an object to a reference of its superclass or interface T. Read more
Tries to downcast to a subclass or interface implementor T. Read more
Tries to downcast to a reference of its subclass or interface implementor T. Read more
Tries to cast to an object of type T. This handles upcasting, downcasting and casting between interface and interface implementors. All checks are performed at runtime, while downcast and upcast will do many checks at compile-time already. Read more
Tries to cast to reference to an object of type T. This handles upcasting, downcasting and casting between interface and interface implementors. All checks are performed at runtime, while downcast and upcast will do many checks at compile-time already. Read more
Casts to T unconditionally. Read more
Casts to &T unconditionally. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Returns true if the object is an instance of (can be cast to) T.
Returns the type of the object.
Returns the ObjectClass of the object. Read more
Returns the class of the object.
Returns the class of the object in the given type T. Read more
Returns the interface T of the object. Read more
Sets the property property_name of the object to value value. Read more
Sets the property property_name of the object to value value. Read more
Sets multiple properties of the object at once. Read more
Sets multiple properties of the object at once. Read more
Gets the property property_name of the object and cast it to the type V. Read more
Gets the property property_name of the object. Read more
Check if the object has a property property_name of the given type_. Read more
Get the type of the property property_name of this object. Read more
Get the ParamSpec of the property property_name of this object.
Return all ParamSpec of the properties of this object.
Freeze all property notifications until the return guard object is dropped. Read more
Set arbitrary data on this object with the given key. Read more
Return previously set arbitrary data of this object with the given key. Read more
Retrieve previously set arbitrary data of this object with the given key. Read more
Set arbitrary data on this object with the given key. Read more
Return previously set arbitrary data of this object with the given key. Read more
Retrieve previously set arbitrary data of this object with the given key. Read more
Block a given signal handler. Read more
Unblock a given signal handler.
Stop emission of the currently emitted signal.
Stop emission of the currently emitted signal by the (possibly detailed) signal name.
Connect to the signal signal_name on this object. Read more
Connect to the signal signal_id on this object. Read more
Connect to the signal signal_name on this object. Read more
Connect to the signal signal_id on this object. Read more
Connect to the signal signal_name on this object. Read more
Connect to the signal signal_id on this object. Read more
Connect a closure to the signal signal_name on this object. Read more
Connect a closure to the signal signal_id on this object. Read more
Limits the lifetime of closure to the lifetime of the object. When the object’s reference count drops to zero, the closure will be invalidated. An invalidated closure will ignore any calls to invoke_with_values, or invoke when using Rust closures.
Emit signal by signal id. Read more
Same as Self::emit but takes Value for the arguments.
Emit signal by its name. Read more
Emit signal by its name. Read more
Emit signal by its name with details. Read more
Emit signal by its name with details. Read more
Emit signal by signal id with details. Read more
Emit signal by signal id with details. Read more
Disconnect a previously connected signal handler.
Connect to the notify signal of the object. Read more
Connect to the notify signal of the object. Read more
Connect to the notify signal of the object. Read more
Notify that the given property has changed its value. Read more
Notify that the given property has changed its value. Read more
Downgrade this object to a weak reference.
Add a callback to be notified when the Object is disposed.
Add a callback to be notified when the Object is disposed. Read more
Bind property source_property on this object to the target_property on the target object. Read more
Returns the strong reference count of this object.
Runs the dispose mechanism of the object. Read more
Ensures that the type has been registered with the type system.
The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
Converts the given value to a String. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.