gsk4/rounded_rect.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
// Take a look at the license at the top of the repository in the LICENSE file.
use std::mem;
use crate::ffi;
use glib::translate::*;
use graphene::{Point, Rect, Size};
glib::wrapper! {
/// A rectangular region with rounded corners.
///
/// Application code should normalize rectangles using
/// [`normalize()`][Self::normalize()]; this function will ensure that
/// the bounds of the rectangle are normalized and ensure that the corner
/// values are positive and the corners do not overlap.
///
/// All functions taking a [`RoundedRect`][crate::RoundedRect] as an argument will internally
/// operate on a normalized copy; all functions returning a [`RoundedRect`][crate::RoundedRect]
/// will always return a normalized one.
///
/// The algorithm used for normalizing corner sizes is described in
/// [the CSS specification](https://drafts.csswg.org/css-backgrounds-3/#border-radius).
#[doc(alias = "GskRoundedRect")]
pub struct RoundedRect(BoxedInline<ffi::GskRoundedRect>);
}
impl RoundedRect {
/// Initializes a rounded rectangle with the given values.
///
/// This function will implicitly normalize the rounded rectangle
/// before returning.
/// ## `bounds`
/// a [`graphene::Rect`][crate::graphene::Rect] describing the bounds
/// ## `top_left`
/// the rounding radius of the top left corner
/// ## `top_right`
/// the rounding radius of the top right corner
/// ## `bottom_right`
/// the rounding radius of the bottom right corner
/// ## `bottom_left`
/// the rounding radius of the bottom left corner
///
/// # Returns
///
/// the initialized rounded rectangle
#[doc(alias = "gsk_rounded_rect_init")]
pub fn new(
bounds: Rect,
top_left: Size,
top_right: Size,
bottom_right: Size,
bottom_left: Size,
) -> Self {
assert_initialized_main_thread!();
unsafe {
let mut rounded_rect = mem::MaybeUninit::uninit();
ffi::gsk_rounded_rect_init(
rounded_rect.as_mut_ptr(),
bounds.to_glib_none().0,
top_left.to_glib_none().0,
top_right.to_glib_none().0,
bottom_right.to_glib_none().0,
bottom_left.to_glib_none().0,
);
Self::unsafe_from(rounded_rect.assume_init())
}
}
/// Initializes a rounded rectangle to the given bounds
/// and sets the radius of all four corners equally.
/// ## `bounds`
/// a [`graphene::Rect`][crate::graphene::Rect]
/// ## `radius`
/// the border radius
///
/// # Returns
///
/// the initialized rounded rectangle
#[doc(alias = "gsk_rounded_rect_init_from_rect")]
#[doc(alias = "init_from_rect")]
pub fn from_rect(bounds: Rect, radius: f32) -> Self {
assert_initialized_main_thread!();
unsafe {
let mut rounded_rect = mem::MaybeUninit::uninit();
ffi::gsk_rounded_rect_init_from_rect(
rounded_rect.as_mut_ptr(),
bounds.to_glib_none().0,
radius,
);
Self::unsafe_from(rounded_rect.assume_init())
}
}
/// Normalizes a rounded rectangle.
///
/// This function will ensure that the bounds of the rounded rectangle
/// are normalized and ensure that the corner values are positive
/// and the corners do not overlap.
///
/// # Returns
///
/// the normalized rounded rectangle
#[doc(alias = "gsk_rounded_rect_normalize")]
pub fn normalize(&mut self) {
unsafe {
ffi::gsk_rounded_rect_normalize(&mut self.inner);
}
}
/// Offsets the rounded rectangle's origin by @dx and @dy.
///
/// The size and corners of the rounded rectangle are unchanged.
/// ## `dx`
/// the horizontal offset
/// ## `dy`
/// the vertical offset
///
/// # Returns
///
/// the offset rounded rectangle
#[doc(alias = "gsk_rounded_rect_offset")]
pub fn offset(&mut self, dx: f32, dy: f32) {
unsafe {
ffi::gsk_rounded_rect_offset(&mut self.inner, dx, dy);
}
}
/// Shrinks (or grows) a rounded rectangle by moving the 4 sides
/// according to the offsets given.
///
/// The corner radii will be changed in a way that tries to keep
/// the center of the corner circle intact. This emulates CSS behavior.
///
/// This function also works for growing rounded rectangles
/// if you pass negative values for the @top, @right, @bottom or @left.
/// ## `top`
/// how far to move the top side downwards
/// ## `right`
/// how far to move the right side to the left
/// ## `bottom`
/// how far to move the bottom side upwards
/// ## `left`
/// how far to move the left side to the right
///
/// # Returns
///
/// the resized rounded rectangle
#[doc(alias = "gsk_rounded_rect_shrink")]
pub fn shrink(&mut self, top: f32, right: f32, bottom: f32, left: f32) {
unsafe {
ffi::gsk_rounded_rect_shrink(&mut self.inner, top, right, bottom, left);
}
}
/// Checks if all corners of a rounded rectangle are right angles
/// and the rectangle covers all of its bounds.
///
/// This information can be used to decide if [`ClipNode::new()`][crate::ClipNode::new()]
/// or [`RoundedClipNode::new()`][crate::RoundedClipNode::new()] should be called.
///
/// # Returns
///
/// true if the rounded rectangle is rectilinear
#[doc(alias = "gsk_rounded_rect_is_rectilinear")]
pub fn is_rectilinear(&self) -> bool {
unsafe { from_glib(ffi::gsk_rounded_rect_is_rectilinear(&self.inner)) }
}
/// Checks if the given point is inside the rounded rectangle.
/// ## `point`
/// the point to check
///
/// # Returns
///
/// true if the point is inside the rounded rectangle
#[doc(alias = "gsk_rounded_rect_contains_point")]
pub fn contains_point(&self, point: Point) -> bool {
unsafe {
from_glib(ffi::gsk_rounded_rect_contains_point(
&self.inner,
point.to_glib_none().0,
))
}
}
/// Checks if the given rectangle is contained inside the rounded rectangle.
/// ## `rect`
/// the rectangle to check
///
/// # Returns
///
/// true if the @rect is fully contained inside the rounded rectangle
#[doc(alias = "gsk_rounded_rect_contains_rect")]
pub fn contains_rect(&self, rect: Rect) -> bool {
unsafe {
from_glib(ffi::gsk_rounded_rect_contains_rect(
&self.inner,
rect.to_glib_none().0,
))
}
}
/// Checks if part a rectangle is contained
/// inside the rounded rectangle.
/// ## `rect`
/// the rectangle to check
///
/// # Returns
///
/// true if the @rect intersects with the rounded rectangle
#[doc(alias = "gsk_rounded_rect_intersects_rect")]
pub fn intersects_rect(&self, rect: Rect) -> bool {
unsafe {
from_glib(ffi::gsk_rounded_rect_intersects_rect(
&self.inner,
rect.to_glib_none().0,
))
}
}
#[inline]
pub fn bounds(&self) -> &graphene::Rect {
unsafe {
&*(&self.inner.bounds as *const graphene::ffi::graphene_rect_t as *const graphene::Rect)
}
}
#[inline]
pub fn corner(&self) -> &[graphene::Size; 4] {
unsafe {
&*(&self.inner.corner as *const [graphene::ffi::graphene_size_t; 4]
as *const [graphene::Size; 4])
}
}
}
impl std::fmt::Debug for RoundedRect {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
f.debug_struct("RoundedRect")
.field("is_rectilinear", &self.is_rectilinear())
.field("bounds", &self.bounds())
.field("corner", &self.corner())
.finish()
}
}